Abstract
On 8–9 March 1992, a long-lived squall line traversed the state of Kansas, producing hail and damaging winds. It was shown previously that this squall line was part of a synoptic-scale rainband 2000 km in length that was associated with a cold front aloft (CFA). The present study is concerned with the detailed mesoscale structure of this squall line and its relationship to the CFA.
Examination of synoptic-scale cross sections based on rawinsonde ascents, and a mesoscale cross section of winds derived from dual-Doppler radar measurements, shows that the squall line was exactly coincident with the “nose” of the CFA. The dual-Doppler analysis also shows that the inflow of air to the squall line was elevated, drawing in air from the potentially unstable layer within the weak warm frontal–like feature that was being occluded by the CFA. The stability analysis of the air in the pre-squall-line environment shows that when the CFA overtook the surface position of the drytrough, the thermal and moisture structure of the atmosphere was such that a moderate amount of lifting provided by the CFA could have released convective instability within an elevated layer approximately 1–2 km above ground.
The mesoscale structure of the squall line, derived from the radar reflectivity and dual-Doppler wind fields, differs substantially from the “leading line/trailing stratiform” conceptual model for midlatitude squall lines. The lack of a strong cold pool, and the presence of strong low-level shear, indicates that the squall line described here was able to persist in its mature stage in an environment that was “greater than optimal” in terms of the balance of the vorticity of the cold pool to that of the low-level shear. However, in view of 1) the weakness of the surface cold pool, 2) the elevated inflow and convergence associated with the convection, and 3) the collocation of the large rainband in which the squall line was embedded and the CFA, it seems likely that the CFA (rather than the cold pool) provided the driving force for the squall line.
Corresponding author address: Peter V. Hobbs, Department of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195-1640.
Email: phobbs@atmos.washington.edu