Consequences of Using the Splitting Method for Implementing Physical Forcings in a Semi-Implicit Semi-Lagrangian Model

Alain Caya Cooperative Centre for Research in Mesometeorology and Sciences de l’Atmosphère, Université du Québec à Montréal, Montreal, Quebec, Canada

Search for other papers by Alain Caya in
Current site
Google Scholar
PubMed
Close
,
René Laprise Cooperative Centre for Research in Mesometeorology and Sciences de l’Atmosphère, Université du Québec à Montréal, Montreal, Quebec, Canada

Search for other papers by René Laprise in
Current site
Google Scholar
PubMed
Close
, and
Peter Zwack Cooperative Centre for Research in Mesometeorology and Sciences de l’Atmosphère, Université du Québec à Montréal, Montreal, Quebec, Canada

Search for other papers by Peter Zwack in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Any comprehensive numerical model is composed of two parts: a dynamical kernel solving for the fluid mechanical field equations and a physical package to parameterize the ensemble effect of subgrid-scale processes upon the resolved scales of the model. There are a number of techniques that can be used for combining the dynamics and physics contributions. One such method called “splitting” is used in some models because of its simplicity and stability property. In this article the authors demonstrate that the splitting method may introduce serious truncation errors when used in conjunction with long time steps that are permitted by semi-implicit and semi-Lagrangian marching algorithms.

Corresponding author address: Alain Caya, Dept. of Earth Sciences, University of Quebec at Montreal, Montreal, PQ, H3C 3P8, Canada.

Email: alain@sca.uqam.ca

Abstract

Any comprehensive numerical model is composed of two parts: a dynamical kernel solving for the fluid mechanical field equations and a physical package to parameterize the ensemble effect of subgrid-scale processes upon the resolved scales of the model. There are a number of techniques that can be used for combining the dynamics and physics contributions. One such method called “splitting” is used in some models because of its simplicity and stability property. In this article the authors demonstrate that the splitting method may introduce serious truncation errors when used in conjunction with long time steps that are permitted by semi-implicit and semi-Lagrangian marching algorithms.

Corresponding author address: Alain Caya, Dept. of Earth Sciences, University of Quebec at Montreal, Montreal, PQ, H3C 3P8, Canada.

Email: alain@sca.uqam.ca

Save
  • Benoit, R., M. Desgagné, P. Pellerin, S. Pellerin, Y. Chartier, and S. Desjardins, 1997: The Canadian MC2: A semi-Lagrangian, semi-implicit wideband atmospheric model suited for finescale process studies and simulation. Mon. Wea. Rev.,125, 2382–2415.

  • Bergeron, G., R. Laprise, D. Caya, A. Robert, and M. Giguère, 1994:Formulation of the Mesoscale Compressible Community (MC2) model. Rep. of the Cooperative Centre for Res. in Mesometeorology, 165 pp. [Available from R. Laprise, Département des Sciences de la Terre, Université du Québec à Montréal, P.O. Box 8888, Stn “Downtown,” Montréal, PQ H3C 3P8, Canada.].

  • Caya, A., 1996: Simulation de l’ajustement vers l’état balancé dans le MC2 suite à un forçage diabatique prescrit à l’échelle méso-alpha. M.S. thesis, Atmospheric Sciences Programme, UQAM, 101 pp. [Available from Alain Caya, Dept. of Earth Sciences, University of Québec at Montréal, Montréal, PQ H3C 3P8, Canada.].

  • Caya, D., R. Laprise, M. Giguère, G. Bergeron, J.-P. Blanchet, B.-J. Stocks, G.-J. Boer, and N.-A. McFarlane, 1995: Description of the Canadian regional climate model. Water, Air Soil Pollut.,82, 477–482.

  • Chen, M., and J. R. Bates, 1996: Forecast experiments with a global finite-difference semi-Lagrangian model. Mon. Wea. Rev.,124, 1992–2007.

  • Héreil, P., and R. Laprise, 1996: Sensitivity of internal gravity waves solutions to the time step of a semi-implicit semi-Lagrangian nonhydrostatic model. Mon. Wea. Rev.,124, 972–999.

  • Laprise, R., D. Caya, G. Bergeron, and M. Giguère, 1997: The formulation of André Robert MC2 (Mesoscale Compressible Community) model. Atmos.Ocean,35, 195–220.

  • LeVeque, R. J., and J. Oliger, 1983: Numerical methods based on additive splittings for hyperbolic partial differential equations. Math. Comput.,40, 469–497.

  • Marchuk, G. I., 1974: Numerical Methods in Weather Prediction. Academic Press, 104–109.

  • McFarlane, N. A., G. J. Boer, J. P. Blanchet, and M. Lazare, 1992: The Canadian Climate Centre second generation general circulation model and its equilibrium climate. J. Climate,5, 1013–1044.

  • Pellerin, P., R. Laprise, and I. Zawadzki, 1995: The performance of a semi-Lagrangian transport scheme for the advection–condensation problem. Mon. Wea. Rev.,123, 3318–3330.

  • Phillips, N. A., 1966: The equations of motion for a shallow rotating atmosphere and the “traditional approximation.” J. Atmos. Sci.,23, 626–628.

  • Robert, A., 1966: The integration of a low order spectral form of the primitive equations. J. Meteor. Soc. Japan,44, 237–245.

  • ——, 1981: A stable numerical integration scheme for the primitive meteorological equations. Atmos.Ocean,19, 35–46.

  • ——, 1982: A semi-Lagrangian and semi-implicit numerical scheme for the primitive meteorological equations. J. Meteor. Soc. Japan,60, 319–325.

  • ——, 1993: Bubble convection experiments with a semi-implicit formulation of the Euler equations. J. Atmos. Sci.,50, 1865–1873.

  • ——, T. L. Yee, and H. Ritchie, 1985: A semi-Lagrangian and semi-implicit numerical integration scheme for multilevel atmospheric models. Mon. Wea. Rev.,113, 388–394.

  • Staniforth, A., and A. Robert, 1981: The computational stability of certain schemes for incorporating vertical fluxes in semi-implicit baroclinic primitive equation models. Notes Sci. et Tech. Division de Recherche en Prévision Numérique (RPN). [Available from RPN, 2121 Trans-Canada Highway, North Service Road, 5th Floor, Dorval, PQ H9P 1J3, Canada.].

  • Tanguay, M., A. Robert, and R. Laprise, 1990: A semi-implicit semi-Lagrangian fully compressible regional forecast model. Mon. Wea. Rev.,118, 1970–1980.

  • Thurre, C., and R. Laprise 1996: Projecting diabatic heating onto hydrostatic modes in a non-hydrostatic model. Research Activities in Atmospheric and Oceanic Modelling, A. Staniforth, Ed., WMO/TD-No. 734, 2.66–2.68.

  • Tsou, C.-H., P. J. Smith, and P. M. Pauley. 1987: Comparison of adiabatic and diabatic forcing in an intense extratropical cyclone system. Mon. Wea. Rev.,115, 763–786.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 125 35 2
PDF Downloads 73 26 6