Remote Sensing of Cirrus Radiative Parameters during EUCREX’94. Case Study of 17 April 1994. Part I: Observations

Laurent Sauvage Laboratoire de Météorologie Dynamique, Ecole Polytechnique, Palaiseau, France

Search for other papers by Laurent Sauvage in
Current site
Google Scholar
PubMed
Close
,
Pierre H. Flamant Laboratoire de Météorologie Dynamique, Ecole Polytechnique, Palaiseau, France

Search for other papers by Pierre H. Flamant in
Current site
Google Scholar
PubMed
Close
,
Hélène Chepfer Laboratoire d’Optique Atmosphérique, Université des Sciences et Technologies de Lille, Villeneuve d’Ascq, France

Search for other papers by Hélène Chepfer in
Current site
Google Scholar
PubMed
Close
,
Gérard Brogniez Laboratoire d’Optique Atmosphérique, Université des Sciences et Technologies de Lille, Villeneuve d’Ascq, France

Search for other papers by Gérard Brogniez in
Current site
Google Scholar
PubMed
Close
,
Vincent Trouillet Service d’Aéronomie du CNRS, Université Pierre et Marie Curie, Paris, France

Search for other papers by Vincent Trouillet in
Current site
Google Scholar
PubMed
Close
,
Jacques Pelon Service d’Aéronomie du CNRS, Université Pierre et Marie Curie, Paris, France

Search for other papers by Jacques Pelon in
Current site
Google Scholar
PubMed
Close
, and
Franck Albers GKSS, Institute of Atmospheric Physics, Geesthacht, Germany

Search for other papers by Franck Albers in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

During the intensive European Cloud and Radiation Experiment 1994 (EUCREX’94) conducted off the coast of Brittany (France) over the Atlantic Ocean during April 1994, natural cirrus have been analyzed from in situ and remote sensing measurements. The authors have particularly studied the case of 17 April 1994. For this day a cirrus bank is described by a complete dataset, that is, classic airborne thermodynamical measurements, microphysical (forward scattering spectrometer probe) and OAP-2D2-C (optical array probe-cloud) probes manufactured by Particle Measuring System, and radiative (Barnes Precision Radiation Thermometer, Eppley pyranometers, and upward- and downward-looking pyrgeometers) measurements above and below the cloud. More specific airborne instruments were used such as upward backscatter lidar with polarization capabilities (LEANDRE) on board the Avion de Recherches Atmosphériques et Télédétection and the Polarization and Directionality of the Earth’s Reflectances (POLDER) radiometer on board the Falcon for measurement of bidirectional and polarized reflectances. The scene was also documented by NOAA-12/Advanced Very High Resolution Radiometer data. However, the nonsphericity of cirrus ice crystals is clearly demonstrated by the lidar backscattering depolarization ratio measurements (Δp = 24%) and by the absence of any rainbow in POLDER bidirectional reflectances. A specular reflection of the solar light observed on POLDER images indicates the presence of horizontally oriented ice particles in the cloud. All these optical properties will be studied in a companion paper (Part II) and compared with optical properties derived from microphysical models in order to evaluate the radiative impact of natural cirrus clouds.

Corresponding author address: Dr. Gérard Brogniez, Laboratoire d’Optique Atmosphérique, Université des Sciences et Technologies de Lille, U.F.R. de Physique, 59655 Villeneuve d’Ascq, Cedex, France.

Email: gerard.brogniez@univ-lillel.fr

Abstract

During the intensive European Cloud and Radiation Experiment 1994 (EUCREX’94) conducted off the coast of Brittany (France) over the Atlantic Ocean during April 1994, natural cirrus have been analyzed from in situ and remote sensing measurements. The authors have particularly studied the case of 17 April 1994. For this day a cirrus bank is described by a complete dataset, that is, classic airborne thermodynamical measurements, microphysical (forward scattering spectrometer probe) and OAP-2D2-C (optical array probe-cloud) probes manufactured by Particle Measuring System, and radiative (Barnes Precision Radiation Thermometer, Eppley pyranometers, and upward- and downward-looking pyrgeometers) measurements above and below the cloud. More specific airborne instruments were used such as upward backscatter lidar with polarization capabilities (LEANDRE) on board the Avion de Recherches Atmosphériques et Télédétection and the Polarization and Directionality of the Earth’s Reflectances (POLDER) radiometer on board the Falcon for measurement of bidirectional and polarized reflectances. The scene was also documented by NOAA-12/Advanced Very High Resolution Radiometer data. However, the nonsphericity of cirrus ice crystals is clearly demonstrated by the lidar backscattering depolarization ratio measurements (Δp = 24%) and by the absence of any rainbow in POLDER bidirectional reflectances. A specular reflection of the solar light observed on POLDER images indicates the presence of horizontally oriented ice particles in the cloud. All these optical properties will be studied in a companion paper (Part II) and compared with optical properties derived from microphysical models in order to evaluate the radiative impact of natural cirrus clouds.

Corresponding author address: Dr. Gérard Brogniez, Laboratoire d’Optique Atmosphérique, Université des Sciences et Technologies de Lille, U.F.R. de Physique, 59655 Villeneuve d’Ascq, Cedex, France.

Email: gerard.brogniez@univ-lillel.fr

Save
  • Albers, F., 1989: Aircraft measurements of ice crystal concentrations and size distributions with optical imaging probes in cirrus clouds (in German). Ph.D. thesis, University of Cologne, 85 pp.

  • Allen, J. R., 1971: Measurements of cloud emissivity in the 8–13 μ waveband. J. Appl. Meteor.,10, 260–265.

  • Brogniez, G., F. Parol, J. C. Buriez, and Y. Fouquart, 1992: Bidirectional reflectances of cirrus clouds modelized from observations during the International Cirrus Experiment ’89. Proceedings of the International Radiation Symposium, S. Keevallik and O. Karner, Eds., A. Deepak, 133–136.

  • Chepfer, H., G. Brogniez, L. Sauvage, P. Flamant, V. Trouillet, and J. Pelon, 1999: Remote sensing of cirrus radiative parameters during EUCREX’94. Case study of 17 April 1994. Part II: Microphysical models. Mon. Wea. Rev.,127, 504–519.

  • De Haan, J. F., P. B. Bosma, and J. W. Hovenier, 1986: The adding method for multiple scattering calculations of polarized light. Astron. Astrophys.,183, 371–391.

  • Deschamps, P. Y., M. Herman, A. Podaire, M. Leroy, M. Laporte, and P. Vermande, 1990: A spatial instrument for the observation of polarization and bidirectionality of the Earth’s reflectances: POLDER. Proc. Remote Sensing for the Nineties, IGARS 90, Washington, DC, 1769–1774.

  • ——, F. M. Bréon, M. Leroy, A. Podaire, A. Bricaud, J. C. Buriez, and G. Sèze, 1994: The POLDER mission: Instrument characteristics and scientific objectives. IEEE Trans. Geosci. Remote Sens.,32, 598–615.

  • Foot, J. S., 1988: Some observations of the optical properties of clouds. II: Cirrus. Quart. J. Roy. Meteor. Soc.,114, 145–164.

  • Gayet, J. F., P. A. Brown, and F. Albers, 1993: A comparison of in-cloud measurements obtained with six PMS 2D-C probes. J. Atmos. Oceanic Technol.,10, 180–194.

  • ——, G. Febvre, and H. Larsen, 1996a: The reliability of the PMS FSSP in the presence of small ice crystals. J. Atmos. Oceanic Technol.,13, 1300–1310.

  • ——, ——, G. Brogniez, H. Chepfer, W. Renger, and P. Wendling, 1996b: Microphysical properties of cirrus and contrails: Cloud field study on 13 October 1989. J. Atmos. Sci.,53, 126–138.

  • Goloub, P., J. L. Deuzé, M. Herman, and Y. Fouquart, 1994: Analysis of the POLDER polarization measurements performed over cloud covers. IEEE Trans. Geosci. Remote Sens.,32, 78–88.

  • Heymsfield, A. J., and D. Baumgardner, 1985: Summary of a workshop on processing 2-D probe data. Bull. Amer. Meteor. Soc.,66, 437–440.

  • ——, K. M. Miller, and J. D. Spinhirne, 1990: The 27–28 October 1986 FIRE IFO cirrus case study: Cloud microstructure. Mon. Wea. Rev.,118, 2313–2328.

  • Kneizys, F. X., E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, and S. A. Clough, 1988:Atmospheric transmittance/radiance: Computer code LOWTRAN 7. AFGL-TR-88-0177, Environmental Research Paper 1010, Air Force Geophysics Laboratory, Hanscom AFB, MA, 137 pp.

  • Knollenberg, R. G., 1970: The optical array: An alternative to scattering or extinction for airborne particle size determination. J. Appl. Meteor.,9, 86–103.

  • Krupp, C., 1991: Holographic measurements of ice crystals in cirrus clouds during the International Cirrus Experiment ICE 89. Rep. 4th ICE/EUCREX workshop, Laboratoire d’Optique Atmosphérique, Université des Sciences et Technologies de Lille, 214 pp. [Available from Laboratoire d’Optique Atmosphérique, USTL, 59655 Villeneuve d’Ascq, France.].

  • Liou, K. N., 1986: Review. Influence of cirrus clouds on weather and climate processes: A global perspective. Mon. Wea. Rev.,114, 1167–1199.

  • McClatchey, R. A., R. W. Fenn, J. E. A. Selby, F. E. Volz, and J. S. Garing, 1971: Optical properties of the atmosphere (revised). AFCRL-71-0279, Environmental Research Paper 354, Air Force Geophysics Laboratory, Hanscom AFB, MA, 85 pp. [Available from Air Force Geophysics Laboratory, LG Hanscom, FIEL, Hanscom AFB, MA 01731.].

  • Miloshevich, L. M., and A. J. Heymsfield, 1997: A balloon-borne continuous cloud particle replicator for measuring vertical profiles of cloud microphysical properties: Instrument design, performance, and collection efficiency analysis. J. Atmos. Oceanic Technol.,14, 753–768.

  • Morcrette, J. J., and Y. Fouquart, 1985: On systematic errors in parameterized calculations of longwave radiation transfer. Quart. J. Roy. Meteor. Soc.,111, 691–708.

  • Nicolas, F., L. Bissonnette, and P. H. Flamant, 1997: Lidar effective multiple-scattering coefficients in cirrus clouds. Appl. Opt.,36, 3458–3468.

  • Paltridge, C. W., and C. M. R. Platt, 1981: Aircraft measurements of solar and infrared radiation and the microphysics of cirrus clouds. Quart. J. Roy. Meteor. Soc.,107, 367–380.

  • Pelon, J., P. H. Flamant, and M. Meissonnier, 1990: The French airborne backscatter lidar LEANDRE-1: Concept and operation. 15th Int. Laser Radar Conf., Tomsk, USSR, Institute of Atmospheric Optics, 36–39.

  • Platt, C. M. R., 1972: Airborne infrared radiance measurements (10 to 12 microns wavelength) off tropical east-coast Australia. J. Geophys. Res.,77, 1597–1609.

  • ——, 1979: Remote sounding of high clouds: I. Calculation of visible and infrared optical properties from lidar and radiometer measurements. J. Appl. Meteor.,18, 1130–1143.

  • ——, and G. L. Stephens, 1980: The interpretation of remotely sensed high cloud emittances. J. Atmos. Sci.,37, 2314–2322.

  • Raschke, E., J. Schmetz, J. Heintzenberg, R. Kandel, and R. W. Saunders, 1990: The International Cirrus Experiment (ICE)—A joint European effort. ESA J.,14, 193–199.

  • ——, and Coauthors, 1996: European Cloud and Radiation Experiment (EUCREX). Final Report on the Project, EV5V-CT 92-0130 EUCREX-2, 154 pp. [Available from GKSS Research Center, D-2054, Geesthacht, Germany.].

  • Sassen, K., 1991: The polarization lidar technique for cloud research:A review and current assessment. Bull. Amer. Meteor. Soc.,72, 1848–1866.

  • Saunders, R. W., G. Brogniez, J. C. Buriez, R. Meerkotter, and P. Wendling, 1992: A comparison of measured and modeled broad band fluxes from aircraft data during the ICE’89 field experiment. J. Atmos. Oceanic Technol.,9, 391–406.

  • Spinhirne, J. D., and W. D. Hart, 1990: Cirrus structure and radiative parameters from airborne lidar and spectral radiometer observations: The 28 October 1986 FIRE study. Mon. Wea. Rev.,118, 2329–2343.

  • ——, ——, and D. L. Hlavka, 1996: Cirrus infrared parameters and shortwave reflectance relations from observations. J. Atmos. Sci.,53, 1438–1458.

  • Takano, Y., and K. N. Liou, 1989: Solar radiative transfer in cirrus clouds. Part I: Single-scattering and optical properties of hexagonal ice crystals. J. Atmos. Sci.,46, 3–19.

  • Warren, S. G., J. Hahn, J. London, R. M. Chervin, and R. L. Jenne, 1988: Global distribution of total cloud cover and cloud type amounts over the ocean. NCAR Tech. Note TN-317+STR, Boulder, CO, 210 pp.

  • WCP, 1986: A preliminary cloudless standard atmosphere for radiation computation. WCP-112 WMO, Geneva, Switzerland, 60 pp.

  • WCRP, 1990: Scientific plan for the Global Energy and Water Cycle Experiment. WCRP-40, WMO, Geneva, Switzerland, 50 pp.

  • Wielicki, B. A., and Coauthors, 1990: The 27–28 October 1986 FIRE IFO cirrus case study: Comparison of radiative transfer theory with observations by satellite and aircraft. Mon. Wea. Rev.,118, 2356–2376.

  • Young, A. T., 1980: Revised depolarization corrections for atmospheric extinction. Appl. Opt.,19, 3427–3428.

  • Young, S., 1995: Analysis of lidar backscatter profiles in optically thin clouds. Appl. Opt.,34, 7019–7031.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 134 55 9
PDF Downloads 44 31 5