Remote Sensing of Cirrus Radiative Parameters during EUCREX’94. Case Study of 17 April 1994. Part II: Microphysical Models

Hélène Chepfer Laboratoire d’Optique Atmosphérique, Université des Sciences et Technologies de Lille, Villeneuve d’Ascq, France

Search for other papers by Hélène Chepfer in
Current site
Google Scholar
PubMed
Close
,
Gérard Brogniez Laboratoire d’Optique Atmosphérique, Université des Sciences et Technologies de Lille, Villeneuve d’Ascq, France

Search for other papers by Gérard Brogniez in
Current site
Google Scholar
PubMed
Close
,
Laurent Sauvage Laboratoire de Météorologie Dynamique, Palaiseau, France

Search for other papers by Laurent Sauvage in
Current site
Google Scholar
PubMed
Close
,
Pierre H. Flamant Laboratoire de Météorologie Dynamique, Palaiseau, France

Search for other papers by Pierre H. Flamant in
Current site
Google Scholar
PubMed
Close
,
Vincent Trouillet Service d’Aéronomie, Université de Paris VI, Paris, France

Search for other papers by Vincent Trouillet in
Current site
Google Scholar
PubMed
Close
, and
Jacques Pelon Service d’Aéronomie, Université de Paris VI, Paris, France

Search for other papers by Jacques Pelon in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this paper, a quantitative analysis of in situ and radiative measurements concerning cirrus clouds is presented. These measurements were performed during the European Cloud and Radiative Experiment 1994 (EUCREX’94) as discussed in an earlier paper (Part I). The analyses are expressed in terms of cirrus microphysics structure. The complex microphysical structure of cirrus cloud is approximated by simple hexagonal monocrystalline particles (columns and plates) and by polycrystalline particles (randomized triadic Koch fractals of second generation) both arbitrarily oriented in space (3D). The authors have also considered hexagonal plates randomly oriented in horizontal planes with a tilted angle of 15° (2D). Radiative properties of cirrus cloud are analyzed, assuming that the cloud is composed of 3D ice crystals, by way of an adding–doubling code. For the hypothesis of 2D ice crystals, a modified successive order of scattering code has been used. The first order of scattering is calculated exactly using the scattering phase function of 2D crystals; for the higher orders, it is assumed that the same particles are 3D oriented. To explain the whole dataset, the most appropriate microphysics, in terms of radiative properties of cirrus clouds, is that of the 2D hexagonal plates whose aspect ratio (length divided by diameter) is 0.05.

Corresponding author address: Dr. Gérard Brogniez, Laboratoire d’Optique Atmosphérique, Université des Sciences et Technologies de Lille, U.F.R. de Physique, 59655 Villeneuve d’Ascq, Cedex, France.

Email: gerard.brogniez@univ-lillel.fr

Abstract

In this paper, a quantitative analysis of in situ and radiative measurements concerning cirrus clouds is presented. These measurements were performed during the European Cloud and Radiative Experiment 1994 (EUCREX’94) as discussed in an earlier paper (Part I). The analyses are expressed in terms of cirrus microphysics structure. The complex microphysical structure of cirrus cloud is approximated by simple hexagonal monocrystalline particles (columns and plates) and by polycrystalline particles (randomized triadic Koch fractals of second generation) both arbitrarily oriented in space (3D). The authors have also considered hexagonal plates randomly oriented in horizontal planes with a tilted angle of 15° (2D). Radiative properties of cirrus cloud are analyzed, assuming that the cloud is composed of 3D ice crystals, by way of an adding–doubling code. For the hypothesis of 2D ice crystals, a modified successive order of scattering code has been used. The first order of scattering is calculated exactly using the scattering phase function of 2D crystals; for the higher orders, it is assumed that the same particles are 3D oriented. To explain the whole dataset, the most appropriate microphysics, in terms of radiative properties of cirrus clouds, is that of the 2D hexagonal plates whose aspect ratio (length divided by diameter) is 0.05.

Corresponding author address: Dr. Gérard Brogniez, Laboratoire d’Optique Atmosphérique, Université des Sciences et Technologies de Lille, U.F.R. de Physique, 59655 Villeneuve d’Ascq, Cedex, France.

Email: gerard.brogniez@univ-lillel.fr

Save
  • Allen, J. R., 1971: Measurements of cloud emissivity in the 8–13 μ waveband. J. Appl. Meteor.,10, 260–265.

  • Arnott, W. P., Y. Y. Dong, and J. Hallet, 1994: Role of small ice crystals in radiative properties of cirrus: A case study, FIRE II, November 22, 1991. J. Geophys. Res.,99, 1371–1381.

  • Brogniez, G., 1988: Light scattering by finite hexagonal crystals arbitrarily oriented in Space. Proceedings of the International Radiation Symposium, J. Lenoble and J. F. Geleyn, Eds., A. Deepak, 64–67.

  • ——, F. Parol, J. C. Buriez, and Y. Fouquart, 1992: Bidirectional reflectances of cirrus clouds modelized from observations during the International Cirrus Experiment. Proceedings of the International Radiation Symposium, S. Keevallik and O. Karner, Eds., A. Deepak, 133–136.

  • Cai, Q., and K. N. Liou, 1982: Polarized light scattering by hexagonal crystals: Theory. Appl. Opt.,21, 3569–3580.

  • Cess, R. D., and Coauthors, 1990: Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. J. Geophys. Res.,95, 16 601–16 615.

  • De Haan, J. F., P. B. Bosma, and J. W. Hovenier, 1986: The adding method for multiple scattering calculations of polarized light. Astron. Astrophys.,183, 371–391.

  • Deschamps, P. Y., F. M. Bréon, M. Leroy, A. Podaire, A. Brickaud, J. C. Buriez, and G. Sèze, 1994: The POLDER mission: Instrument characteristics and scientific objectives. IEEE Trans. Geosci. Remote Sens.,32, 598–615.

  • Deuzé, J. L., C. Devaux, M. Herman, R. Santer, and D. Tanré, 1988a:Saharan aerosols over the south of France: Characterization derived from satellite data and ground based measurements. J. Appl. Meteor.,27, 680–686.

  • ——, M. Herman, and R. Santer, 1988b: Fourier series expansion of the transfer equation in the atmosphere–ocean system. J. Quant. Spectrosc. Radiat. Transfer,41, 483–494.

  • Elouragini, S., 1991: Etude des propriétés optiques et géométriques des cirrus par télédétection optique active (lidar) et passive (radiométrie). Ph.D. thesis, Université de Paris VI, 280 pp. [Available from Laboratoire de Météorologie Dynamique, Palaiseau, France.].

  • Giraud, V., J. C. Buriez, Y. Fouquart, F. Parol, and G. Sèze, 1997: Large-scale analysis of cirrus clouds from AVHRR data: Assessment of both a microphysical index and the cloud top temperature. J. Appl. Meteor.,36, 664–675.

  • Goloub, P., J. L. Deuzé, M. Herman, and Y. Fouquart, 1994: Analysis of the POLDER polarization measurements performed over cloud covers. IEEE Trans. Geosci. Remote Sens.,32, 78–88.

  • Hansen, J. E., A. Lacis, D. Rind, G. Russel, P. Stone, I. Fung, R. Ruedy, and J. Lerner, 1984: Climate sensitivity: Analysis of feedback mechanisms. Climate Processes and Climate Sensitivity, Geophys. Monogr., No. 29, Amer. Geophys. Union, 130–163.

  • Heymsfield, A. J., 1975: Cirrus uncinus generating cells and the evolution of cirriform clouds. Part I: Aircraft measurements of the growth of the ice phase. J. Atmos. Sci.,32, 799–808.

  • ——, 1977: Precipitation development in stratiform ice clouds: A microphysical and dynamical study. J. Atmos. Sci.,34, 367–381.

  • Inoue, T., 1985: On the temperature and the effective emissivity determination of semi-transparent cirrus clouds by bi-spectral measurements in the 10 μm window region. J. Meteor. Soc. Japan,63, 88–98.

  • Krupp, C., 1991: Holographic measurements of ice crystals in cirrus clouds during the International Cirrus Experiment ICE 1989. Report of the 4th ICE/EUCREX Workshop, R. W. Saunders and P. R. A. Brown, Eds., Meteorological Research Flight, 58–67.

  • Lenoble, J., 1993: Atmospheric Radiative Transfer. A. Deepak, 532 pp.

  • Liou, K.-N., 1986: Review. Influence of cirrus clouds on weather and climate processes: A global perspective. Mon. Wea. Rev.,114, 1167–1199.

  • Lynch, D. K., A. B. Fraser, and S. D. Gedzelman, 1994a: Subsuns, bottlinger’s rings and elliptical halos. Appl. Opt.,33, 4580–4595.

  • ——, J. G. Shanks, and S. D. Gedzelman, 1994b: Specular scattering and crystal dynamics in cirrus clouds. Proc. SPIE/EOS Symp. on Passive Infrared Remote Sensing of Clouds and the Atmosphere, Rome, Italy.

  • MacDowell, R. S., 1979: Frequency analysis of the circumzenithal arc: Evidence for the oscillations of ice crystals plates in the upper atmosphere. J. Opt. Soc. Amer.,69, 1119–1126.

  • Macke, A., J. Mueller, and E. Raschke, 1996: Single scattering properties of atmospheric ice crystal. J. Atmos. Sci.,53, 2813–2825.

  • Mie, G., 1908: Beigrade für Optik trufen Medien speziell kolloidaler Metallosungen. Ann. Phys.,25, 377–445.

  • Miloshevich, L. M., and A. J. Heymsfield, 1997: A balloon-borne continuous cloud particle replicator for measuring vertical profiles of cloud microphysical properties: Instrument design, performance, and collection efficiency analysis. J. Atmos. Oceanic Technol.,14, 753–768.

  • Minnis, P., K.-N. Liou, and Y. Takano, 1993: Inference of cirrus cloud properties using satellite-observed visible and infrared radiances. Part I: Parameterization of radiance fields. J. Atmos. Sci.,50, 1279–1304.

  • Mishchenko, M. I., D. J. Wielaard, and B. E. Carlson, 1997: T-matrix computations of zenith-enhanced lidar backscatter from horizontally oriented ice plates. Geophys. Res. Lett.,24, 771–774.

  • Mitchell, D. L., and W. P. Arnott, 1994: A model predicting the evolution of ice particles size spectra and radiative properties of cirrus clouds. Part II: Dependence of absorption and extinction on ice crystal morphology. J. Atmos. Sci.,51, 817–832.

  • Mitchell, J. N. F., C. A. Senior, and W. J. Ingram, 1989: CO2 and climate: A missing feedback? Nature,341, 132–134.

  • Pelon, J., P. H. Flamant, and M. Meissonnier, 1990: The French airborne backscatter lidar LEANDRE-1: Concept and operation. 15th Int. Laser Radar Conf., Tomsk, USSR, Institute of Atmospheric Optics, 36–39.

  • Platt, C. M. R., 1973: Lidar and radiometric observations of cirrus clouds. J. Atmos. Sci.,30, 1191–1204.

  • ——, 1978: Lidar backscatter from horizontal ice crystal plates. J. Appl. Meteor.,17, 482–488.

  • ——, J. C. Scott, and A. C. Dilley, 1987: Remote sounding of high clouds. Part VI: Optical properties of midlatitude and tropical cirrus. J. Atmos. Sci.,44, 729–747.

  • Ramanathan, V., 1987: The role of the earth radiation budget studies in climate and general circulation research. J. Geophys. Res.,92, 4075–4095.

  • ——, R. D. Cess, E. F. Harrison, P. Minnis, B. R. Bakstrom, E. Ahmad, and D. Hartmann, 1989: Cloud-radiative forcing and climate: Results from the Earth Radiation Budget Experiment. Science,243, 57–63.

  • Raschke, E., and K. D. Rockwitz, 1988: The International Cirrus Experiment. Some preliminary results from the first field phase. Proceedings of the International Radiation Symposium, J. Lenoble and J. F. Geleyn, Eds., A. Deepak, 6–9.

  • ——, J. Schmetz, J. Heintzenberg, R. Kandel, and R. Saunders, 1990:The International Cirrus Experiment (ICE)—A joint European effort. ESA J.,4, 193–199.

  • Rockwitz, K. D., 1989: Scattering properties of horizontally oriented ice crystal columns in cirrus clouds. Part 1. Appl. Opt.,28, 4103–4110.

  • Sassen, K., 1980: Remote sensing of planar ice crystal fall attitudes. J. Meteor. Soc. Japan,58, 422–433.

  • ——, 1991: The polarization lidar technique for cloud research: A review and current assessment. Bull. Amer. Meteor. Soc.,72, 1848–1866.

  • ——, and N. C. Knight, 1994: Effects of ice-crystal structure on halo formation: Cirrus cloud experimental and ray-tracing modeling studies. Appl. Opt.,33, 4590–4601.

  • Saunders, R. W., G. Brogniez, J. C. Buriez, R. Meerkotter, and P. Wendling, 1992: A comparison of measured and modeled broadband fluxes from aircraft data during the ICE’89 field experiment. J. Atmos. Oceanic Technol.,9, 391–405.

  • Sauvage, L., H. Chepfer, V. Trouillet, P. H. Flamant, G. Brogniez, J. Pelon, and F. Albers, 1999: Remote sensing of cirrus radiative parameters during EUCREX’94: Case study of 17 April 1994. Part I: Observations. Mon. Wea. Rev.,127, 486–503.

  • Shanks, J. G., and D. K. Lynch, 1995: Specular scattering in cirrus cloud. Infrared Remote Sensing of Clouds and Atmosphere III, Proc. EROPTO Series, Paris, France, SPIE, Vol. 2578, 227–238.

  • Slingo, A., and H. M. Schrecker, 1982: On the shortwave radiative properties of stratiform water clouds. Quart. J. Roy. Meteor. Soc.,108, 407–426.

  • Takano, Y., and K. N. Liou, 1989a: Solar radiative transfer in cirrus clouds. Part I: Single-scattering and optical properties of hexagonal ice crystals. J. Atmos. Sci.,46, 3–19.

  • ——, and ——, 1989b: Solar radiative transfer in cirrus clouds. Part II: Theory and computation of multiple scattering in an anisotropic medium. J. Atmos. Sci.,46, 20–36.

  • van de Hulst, H. C., 1981: Light Scattering by Small Particles. Dover, 470 pp.

  • Wendling, P., R. Wendling, and H. K. Weickmann, 1979: Scattering of solar radiation by hexagonal ice crystals. Appl. Opt.,18, 2663–2671.

  • Wetherald, R. T., and S. Manabe, 1988: Cloud feedback processes in a general circulation model. J. Atmos. Sci.,45, 1397–1415.

  • Wielicki, B. A., and Coauthors, 1990: The 27–28 October 1986 FIRE IFO cirrus case study: Comparison of radiative transfer theory with observations by satellite and aircraft. Mon. Wea. Rev.,118, 2356–2376.

  • Woodbury, G. E., and P. Mc Cormick, 1986: Zonal and geographycal distributions of cirrus clouds determined from SAGE data. J. Geophys. Res.,91, 2775–2785.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 212 32 4
PDF Downloads 36 15 2