Observations of Nontornadic Low-Level Mesocyclones and Attendant Tornadogenesis Failure during VORTEX

R. J. Trapp NOAA/National Severe Storms Laboratory, and Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

Search for other papers by R. J. Trapp in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Three storms intercepted during the Verification of the Origins of Rotation in Tornadoes Experiment generated a moderate-to-strong mesocyclone within the lowest several hundred meters above the ground and qualitatively appeared capable of tornadogenesis, yet did not produce a tornado. Such novel observations of what is considered“tornadogenesis failure” are documented and used to show the insufficiency of a low-level mesocyclone for tornadogenesis. Possible modes of failure are discussed.

Corresponding author address: Dr. R. Jeffrey Trapp, NSSL, 1313 Halley Circle, Norman, OK 73069.

Email: trapp@nssl.noaa.gov

Abstract

Three storms intercepted during the Verification of the Origins of Rotation in Tornadoes Experiment generated a moderate-to-strong mesocyclone within the lowest several hundred meters above the ground and qualitatively appeared capable of tornadogenesis, yet did not produce a tornado. Such novel observations of what is considered“tornadogenesis failure” are documented and used to show the insufficiency of a low-level mesocyclone for tornadogenesis. Possible modes of failure are discussed.

Corresponding author address: Dr. R. Jeffrey Trapp, NSSL, 1313 Halley Circle, Norman, OK 73069.

Email: trapp@nssl.noaa.gov

Save
  • Adlerman, E. J., K. K. Droegemeier, and M. Xue, 1996: Numerical simulations of cyclic mesocyclogenesis. Preprints, 18th Conf. on Severe Local Storms, San Francisco, CA, Amer. Meteor. Soc., 728–732.

  • Barnes, S. L., 1964: A technique for maximum detail in numerical weather map analysis. J. Appl. Meteor.,3, 396–409.

  • ——, 1978: Oklahoma thunderstorms on 29–30 April 1970. Part II:Radar-observed merger of twin hook echoes. Mon. Wea. Rev.,106, 685–696.

  • Brandes, E. A., 1977: Flow in a severe thunderstorm observed by dual Doppler radar. Mon. Wea. Rev.,105, 113–120.

  • ——, 1978: Mesocyclone evolution and tornadogenesis: Some observations. Mon. Wea. Rev.,106, 995–1011.

  • ——, 1993: Tornadic thunderstorm characteristics determined with Doppler radar. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., No. 79, Amer. Geophys. Union, 143–159.

  • Brooks, H. E., C. A. Doswell III, and R. Davies-Jones, 1993: Environmental helicity and the maintenance and evolution of low-level mesocyclones. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., No. 79, Amer. Geophys. Union, 97–104.

  • ——, ——, and R. B. Wilhelmson, 1994: The role of midtropospheric wind in the evolution and maintenance of low-level mesocyclones. Mon. Wea. Rev.,122, 126–136.

  • Brown, R. A., L. R. Lemon, and D. W. Burgess, 1978: Tornado detection by pulsed Doppler radar. Mon. Wea. Rev.,106, 29–39.

  • Browning, K. A., and R. J. Donaldson Jr., 1963: Airflow and structure of a tornadic storm. J. Atmos. Sci.,20, 533–545.

  • Burgess, D. W., and L. R. Lemon, 1990: Severe thunderstorm detection by radar. Radar in Meteorology, D. Atlas, Ed., Amer. Meteor. Soc., 619–647.

  • ——, V. T. Wood, and R. A. Brown, 1982: Mesocyclone evolution statistics. Preprints, 12th Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 422–424.

  • Chisholm, A. J., and H. H. Renick, 1972: The kinematics of multicell and supercell Alberta hailstorms. Alberta Hail Studies, 1972, Research Council of Alberta Hail Studies Rep. 72-2, 6 pp.

  • Church, C. R., J. T. Snow, G. L. Baker, and E. M. Agee, 1979: Characteristics of tornado-like vortices as a function of swirl ratio: A laboratory investigation. J. Atmos. Sci.,36, 1755–1776.

  • Davies-Jones, R., 1973: The dependence of core radius on swirl ratio in a tornado simulator. J. Atmos. Sci.,30, 1427–1430.

  • ——, and H. E. Brooks, 1993: Mesocyclogenesis from a theoretical perspective. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., No. 79, Amer. Geophys. Union, 105–114.

  • Donaldson, R. J., Jr., 1990: Foundations of severe storm detection by radar. Radar in Meteorology. D. Atlas, Ed., Amer. Meteor. Soc., 115–121.

  • Droegemeier, K. K., S. M. Lazarus, and R. Davies-Jones, 1993: The influence of helicity on numerically simulated convective storms. Mon. Wea. Rev.,121, 2005–2029.

  • Fujita, T. T., 1981: Tornadoes and downbursts in the context of generalized planetary scales. J. Atmos. Sci.,38, 1511–1534.

  • Gal-Chen, T., 1982: Errors in fixed and moving frame of references:Applications for conventional and Doppler radar analysis. J. Atmos. Sci.,39, 2279–2300.

  • Jischke, M. C., and M. Parang, 1974: Properties of simulated tornado-like vortices. J. Atmos. Sci.,31, 506–512.

  • Jorgensen, D. P., T. Matejka, and J. D. DuGranrut, 1996: Multi-beam techniques for deriving wind fields from airborne Doppler radars. J. Meteor. Atmos. Phys.,59, 83–104.

  • Klemp, J. B., 1987: Dynamics of tornadic thunderstorms. Annu. Rev. Fluid Mech.,19, 369–402.

  • ——, and R. Rotunno, 1983: A study of the tornadic region within a supercell thunderstorm. J. Atmos. Sci.,40, 359–377.

  • Koch, S. E., M. DesJardins, and P. J. Kocin, 1983: An interactive Barnes objective map analysis scheme for use with satellite and conventional data. J. Climate Appl. Meteor.,22, 1487–1503.

  • Lee, W.-C., P. Dodge, F. D. Marks, and P. H. Hildebrand, 1994: Mapping of airborne Doppler radar data. J. Atmos. Oceanic Technol.,11, 572–578.

  • Lemon, L. R., 1980: Severe thunderstorm radar identification techniques and warning criteria. NOAA Tech. Memo. NWS NSSFC-3, 60 pp. [NTIS PB-231409.].

  • ——, and C. A. Doswell III, 1979: Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis. Mon. Wea. Rev.,107, 1184–1197.

  • Leslie, L. M., 1971: The development of concentrated vortices: A numerical study. J. Fluid Mech.,48, 1–21.

  • Lewellen, W. S., 1976: Theoretical models of the tornado vortex. Proc. Symp. on Tornadoes: Assessment of Knowledge and Implications for Man, Lubbock, TX, Texas Tech University, 107–143.

  • Marwitz, J. D., 1972: The structure and motion of severe hailstorms. Part I: Supercell storms. J. Appl. Meteor.,11, 166–179.

  • McCaul, E. W., Jr., and M. L. Weisman, 1996: The dependence of simulated storm structure on variations in the shapes of environmental buoyancy and shear profiles. Preprints, 18th Conf. on Severe Local Storms, San Francisco, CA, Amer. Meteor. Soc., 718–722.

  • Oye, R., C. Mueller, and S. Smith, 1995: Software for radar translation, visualization, editing, and interpretation. Preprints, 27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 359–361.

  • Rasmussen, E. N., 1995: VORTEX operations plan. 141 pp. [Available upon request from National Severe Storms Laboratory, 1313 Halley Circle, Norman, OK 73069.].

  • ——, J. M. Straka, R. P. Davies-Jones, C. A. Doswell, F. H. Carr, M. D. Eilts, and D. R. MacGorman, 1994: Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX. Bull. Amer. Meteor. Soc.,75, 995–1006.

  • Ray, P. S., C. L. Ziegler, W. Bumgarner, and R. J. Serafin, 1980: Single- and multiple-Doppler radar observations of tornadic storms. Mon. Wea. Rev.,108, 1607–1625.

  • Rotunno, R., 1977: Numerical simulation of a laboratory vortex. J. Atmos. Sci.,34, 1942–1956.

  • ——, 1984: An investigation of a three-dimensional asymmetric vortex. J. Atmos. Sci.,41, 283–298.

  • ——, and J. B. Klemp, 1985: On the rotation and propagation of simulated supercell thunderstorms. J. Atmos. Sci.,42, 271–292.

  • Snow, J. T., 1982: A review of recent advances in tornado vortex dynamics. Rev. Geophys. Space Phys.,20, 953–964.

  • Sperow, K. S., 1995: Airborne Doppler analysis of the 18 February 1993 TOGA COARE squall line using a new analysis method: The two-step, second order Lax-Wendroff scheme. M.S. thesis, University of Oklahoma, 89 pp. [Available from School of Meteorology, University of Oklahoma, 100 E. Boyd, Norman, OK 73019.].

  • ——, H. B. Bluestein, and T. Gal-Chen, 1995: Testing a Doppler analysis method: The two-step, second order Lax-Wendroff scheme. Preprints, 27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 296–298.

  • Stout, G. E., and F. A. Huff, 1953: Radar records Illinois tornadogenesis. Bull. Amer. Meteor. Soc.,34, 281–284.

  • Straka, J. M., E. N. Rasmussen, and S. E. Fredrickson, 1996: A mobile mesonet for finescale meteorological observations. J. Atmos. Oceanic Technol.,13, 921–936.

  • Trapp, R. J., and B. F. Fiedler, 1995: Tornado-like vortexgenesis in a simplified numerical model. J. Atmos. Sci.,52, 3757–3778.

  • ——, and R. Davies-Jones, 1997: Tornadogenesis with and without a dynamic pipe effect. J. Atmos. Sci.,54, 113–133.

  • Wakimoto, R. M., and N. T. Atkins, 1996: Observations on the origins of rotation: The Newcastle tornado during VORTEX 94. Mon. Wea. Rev.,124, 384–407.

  • ——, and C. Liu, 1998: The Garden City, Kansas, storm during VORTEX 95. Part II: The wall cloud and tornado. Mon. Wea. Rev.,126, 393–408.

  • Ward, N. B., 1972: The exploration of certain features of tornado dynamics using a laboratory model. J. Atmos. Sci.,29, 1194–1204.

  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev.,110, 504–520.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 489 139 21
PDF Downloads 254 66 12