A Clarification of Vortex Breakdown and Tornadogenesis

R. Jeffrey Trapp National Severe Storms Laboratory, NOAA, and Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

Search for other papers by R. Jeffrey Trapp in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Recent and past observations of a central downdraft within a mesocyclone have been misinterpreted as evidence of vortex breakdown on the mesocyclone scale. In this note, the literature is reviewed and model examples are provided in order to demonstrate that the mesocyclone dynamics likely precludes mesocyclonic vortex breakdown. It is shown that an adverse vertical pressure gradient, induced by vertical vorticity that decreases in intensity with height, leads to the formation of a central downdraft, hence, two-celled vortex, in absence of vortex breakdown. Two-celled mesocyclones, then, may form when low-level vertical vorticity, generated by the vertical tilting of horizontal baroclinic vorticity, exceeds that generated at midlevels. Tornadogenesis occurs in a two-celled mesocyclonic vortex if an instability to which the vortex is susceptible is released.

Corresponding author address: Dr. R. Jeffrey Trapp, NCAR/MMM, P.O. Box 3000, Boulder, CO 80307-3000.

Email: jtrapp@ucar.edu

Abstract

Recent and past observations of a central downdraft within a mesocyclone have been misinterpreted as evidence of vortex breakdown on the mesocyclone scale. In this note, the literature is reviewed and model examples are provided in order to demonstrate that the mesocyclone dynamics likely precludes mesocyclonic vortex breakdown. It is shown that an adverse vertical pressure gradient, induced by vertical vorticity that decreases in intensity with height, leads to the formation of a central downdraft, hence, two-celled vortex, in absence of vortex breakdown. Two-celled mesocyclones, then, may form when low-level vertical vorticity, generated by the vertical tilting of horizontal baroclinic vorticity, exceeds that generated at midlevels. Tornadogenesis occurs in a two-celled mesocyclonic vortex if an instability to which the vortex is susceptible is released.

Corresponding author address: Dr. R. Jeffrey Trapp, NCAR/MMM, P.O. Box 3000, Boulder, CO 80307-3000.

Email: jtrapp@ucar.edu

Save
  • Benjamin, T. B., 1962: Theory of vortex breakdown phenomena. J. Fluid Mech.,12, 593–629.

  • Bluestein, H. B., 1985: Wall clouds with eyes. Mon. Wea. Rev.,113, 1081–1085.

  • ——, S. G. Gaddy, D. C. Dowell, A. L. Pazmany, J. C. Galloway, R. E. McIntosh, and H. Stein, 1997: Doppler radar observations of substorm-scale vortices in a supercell. Mon. Wea. Rev.,125, 1046–1059.

  • Bodewadt, V. T., 1940: Die Drehstromung uber festem Grunde. Z. Angew. Math. Mech.,20, 241–253.

  • Brandes, E. A., 1978: Mesocyclone evolution and tornadogenesis: Some observations. Mon. Wea. Rev.,106, 995–1011.

  • Burgraff, O. R., K. Stewartson, and R. Belcher, 1971: Boundary layer induced by a potential vortex. Phys. Fluids,14, 1821–1833.

  • Cai, H., and R. M. Wakimoto, 1998: Comparison between the Garden City tornadic and Hays nontornadic supercells during VORTEX95. Preprints, 19th Conf. on Severe Local Storms, Minneapolis, MN, Amer. Meteor. Soc., 108–111.

  • Church, C. R., J. T. Snow, G. L. Baker, and E. M. Agee, 1979: Characteristics of tornado-like vortices as a function of swirl ratio: A laboratory investigation. J. Atmos. Sci.,36, 1755–1766.

  • Davies-Jones, R. P., 1973: The dependence of core radius on swirl ratio in a tornado simulator. J. Atmos. Sci.,30, 1427–1430.

  • ——, 1986: Tornado dynamics. Thunderstorm Morphology and Dynamics, 2d ed., E. Kessler, Ed., University of Oklahoma Press, 197–236.

  • Fiedler, B. H., 1993: Numerical simulation of axisymmetric tornadogenesis in buoyant convection. The Tornado: Its Structure, Dynamics, Prediction, and Hazards. Geophys. Monogr., No. 79, Amer. Geophys. Union, 41–48.

  • Grasso, L, D., and W. R. Cotton, 1995: Numerical simulation of a tornado vortex. J. Atmos. Sci.,52, 1192–1203.

  • Hall, M. G., 1972: Vortex breakdown. Annu. Rev. Fluid. Mech.,4, 195–218.

  • Howells, P. A. C., R. Rotunno, and R. K. Smith, 1988: A comparative study of atmospheric and laboratory-analogue numerical tornado-vortex models. Quart. J. Roy. Meteor. Soc.,114, 801–822.

  • Klemp, J. B., and R. Rotunno, 1983: A study of the tornadic region within a supercell thunderstorm. J. Atmos. Sci.,40, 359–377.

  • Leibovich, S., 1978: The structure of vortex breakdown. Annu. Rev. Fluid. Mech.,10, 221–246.

  • ——, 1984: Vortex stability and breakdown: Survey and extension. AIAA J.,22, 1192–1206.

  • Lemon, L. R., D. W. Burgess, and R. A. Brown, 1975: Tornado production and storm sustenance. Preprints, Ninth Conf. on Severe Local Storms, Norman, OK, Amer. Meteor. Soc., 100–104.

  • Lewellen, W. S., 1971: A review of confined vortex flows. NASA Contractor Rep. NASA CR-1772, 219 pp. [Available from National Technical Information Service, Springfield, VA 22151.].

  • Lugt, H. J., 1989: Vortex breakdown in atmospheric columnar vortices. Bull. Amer. Meteor. Soc.,70, 1526–1537.

  • Pauley, R. L., and J. T. Snow, 1988: On the kinematics and dynamics of the 18 July 1986 Minneapolis tornado. Mon. Wea. Rev.,116, 2731–2736.

  • Rotunno, R., 1977: Numerical simulation of a laboratory vortex. J. Atmos. Sci.,34, 1942–1956.

  • ——, 1984: An investigation of a three-dimensional asymmetric vortex. J. Atmos. Sci.,41, 283–298.

  • ——, 1986: Tornadoes and tornadogenesis. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 414–436.

  • Rusak, Z., S. Wang, and C. H. Whiting, 1998: The evolution of a perturbed vortex in a pipe to axisymmetric vortex breakdown. J. Fluid Mech.,366, 211–237.

  • Schlichting, H., 1979: Boundary-Layer Theory. McGraw-Hill, 817 pp.

  • Snow, J. T., 1982: A review of recent advances in tornado vortex dynamics. Rev. Geophys. Space Phys.,20, 953–964.

  • Trapp, R. J., 1999: Observations of nontornadic low-level mesocyclones and attendant tornadogenesis failure during VORTEX. Mon. Wea. Rev.,127, 1693–1705.

  • ——, and B. H. Fiedler, 1995: Tornado-like vortexgenesis in a simplified numerical model. J. Atmos. Sci.,52, 3757–3778.

  • ——, and R. Davies-Jones, 1997: Tornadogenesis with and without a dynamic pipe effect. J. Atmos. Sci.,54, 113–133.

  • Wakimoto, R. M., and C. Liu, 1998: The Garden City, Kansas, storm during VORTEX 95. Part II: The wall cloud and tornado. Mon. Wea. Rev.,126, 393–408.

  • ——, ——, and H. Cai, 1998: The Garden City, Kansas, storm during VORTEX 95. Part I: Overview of the storm’s life cycle and mesocyclogenesis. Mon. Wea. Rev.,126, 372–392.

  • Ward, N. B., 1972: The exploration of certain features of tornado dynamics using a laboratory model. J. Atmos. Sci.,29, 1194–1204.

  • Wicker, L. J., and R. B. Wilhelmson, 1995: Simulation and analysis of tornado development and decay within a three-dimensional supercell thunderstorm. J. Atmos. Sci.,52, 2675–2703.

  • Wurman, J., J. Straka, E. Rasmussen, M. Randall, and A. Zahrai, 1997: Design and deployment of a portable, pencil-beam, pulsed, 3-cm Doppler radar. J. Atmos. Oceanic Technol.,6, 1502–1512.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 870 259 28
PDF Downloads 673 182 20