Interactions between a Developing Mesoscale Convective System and Its Environment. Part I: Observational Analysis

Jason E. Nachamkin Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Jason E. Nachamkin in
Current site
Google Scholar
PubMed
Close
,
Ray L. McAnelly Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Ray L. McAnelly in
Current site
Google Scholar
PubMed
Close
, and
William R. Cotton Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by William R. Cotton in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper is the first in a two part series in which the interactions between a growing mesoscale convective system (MCS) and its surrounding environment are investigated. The system studied here developed in northeastern Colorado on 19 July 1993 and propagated into Kansas as a long-lived nocturnal MCS. High-resolution dual-Doppler and surface mesonet data collected from this system are discussed in Part I, while the results of a numerical simulation are discussed in Part II.

The observations show that organized mesoscale surface pressure and flow features appeared very early in the lifetime of this system, long before the development of any trailing stratiform precipitation. Most of the stratiform anvil advected ahead of the convective line in the strong upper-tropospheric westerlies. In accordance with this, most of the mid- and upper-tropospheric storm-relative flow behind the line remained westerly, or rear-to-front.

Despite the westerlies, the strongest flow perturbations with respect to the ambient winds developed to the rear of the line. The structure of these perturbations was similar to the upper-tropospheric front-to-rear and midtropospheric rear-to-front flows typically found in more mature leading-line/trailing-stratiform systems. The presence of these perturbations on the upwind side of the convective line indicates that gravity wave propagation was primarily responsible for their development.

* Current affiliation: Naval Research Laboratory, Monterey, California.

Corresponding author address: Dr. Jason Nachamkin, Naval Research Laboratory, 7 Grace Hopper Ave., Monterey, CA 93943.

Email: nachamkin@nrlmry.navy.mil

Abstract

This paper is the first in a two part series in which the interactions between a growing mesoscale convective system (MCS) and its surrounding environment are investigated. The system studied here developed in northeastern Colorado on 19 July 1993 and propagated into Kansas as a long-lived nocturnal MCS. High-resolution dual-Doppler and surface mesonet data collected from this system are discussed in Part I, while the results of a numerical simulation are discussed in Part II.

The observations show that organized mesoscale surface pressure and flow features appeared very early in the lifetime of this system, long before the development of any trailing stratiform precipitation. Most of the stratiform anvil advected ahead of the convective line in the strong upper-tropospheric westerlies. In accordance with this, most of the mid- and upper-tropospheric storm-relative flow behind the line remained westerly, or rear-to-front.

Despite the westerlies, the strongest flow perturbations with respect to the ambient winds developed to the rear of the line. The structure of these perturbations was similar to the upper-tropospheric front-to-rear and midtropospheric rear-to-front flows typically found in more mature leading-line/trailing-stratiform systems. The presence of these perturbations on the upwind side of the convective line indicates that gravity wave propagation was primarily responsible for their development.

* Current affiliation: Naval Research Laboratory, Monterey, California.

Corresponding author address: Dr. Jason Nachamkin, Naval Research Laboratory, 7 Grace Hopper Ave., Monterey, CA 93943.

Email: nachamkin@nrlmry.navy.mil

Save
  • Bell, G. D., and J. E. Janowiak, 1995: Atmospheric circulation associated with the Midwest floods of 1993. Bull. Amer. Meteor. Soc.,76, 681–695.

  • Bluestein, H. B., and M. H. Jain, 1985: Formation of mesoscale lines of precipitation: Severe squall lines in Oklahoma during the spring. J. Atmos. Sci.,42, 1711–1732.

  • Bretherton, C. S., and P. K. Smolarkiewicz, 1989: Gravity waves, compensating subsidence, and detrainment around cumulus clouds. J. Atmos. Sci.,46, 740–759.

  • Brown, J. M., 1979: Mesoscale unsaturated downdrafts driven by rainfall evaporation: A numerical study. J. Atmos. Sci.,36, 313–338.

  • Dirks, R., 1969: A theoretical investigation of convective patterns in the lee of the Colorado Rockies. Dept. of Atmospheric Science Paper 145, Colorado State University, 122 pp. [Available from Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523.].

  • Fortune, M. A., W. R. Cotton, and R. L. McAnelly, 1992: Frontal wave-like evolution in some mesoscale convective complexes. Mon. Wea. Rev.,120, 1279–1300.

  • Fujita, T. T., 1963: Analytical mesometeorology: A review. Severe Local Storms, Meteor. Monogr., No. 27, Amer. Meteor. Soc., 77–125.

  • ——, 1982: Principle of stereoscopic height computations and their applications to stratospheric cirrus over severe storms. J. Meteor. Soc. Japan,60, 355–368.

  • Gal-Chen, T., 1978: A method for the initialization of the anelastic equations: Implications for matching models with observations. Mon. Wea. Rev.,106, 587–606.

  • ——, and C. E. Hane, 1981: Retrieving buoyancy and pressure fluctuations from Doppler radar observations: A status report. Recent Progress in Radar Meteorology, Atmospheric Technology, No. 13, NCAR, 98–104.

  • Grady, R. L., and J. Verlinde, 1997: Triple-Doppler analysis of a discretely propagating long-lived High Plains squall line. J. Atmos. Sci.,54, 2729–2748.

  • Houze, R. A., Jr., S. A. Rutledge, M. I. Biggerstaff, and B. F. Smull, 1989: Interpretation of Doppler weather radar displays of midlatitude mesoscale convective systems. Bull. Amer. Meteor. Soc.,70, 608–619.

  • ——, B. F. Smull, and P. Dodge, 1990: Mesoscale organization of springtime rainstorms in Oklahoma. Mon. Wea. Rev.,118, 613–654.

  • Johnson R. H., and P. J. Hamilton, 1988: The relationship of surface pressure features to the precipitation and airflow structure of an intense midlatitude squall line. Mon. Wea. Rev.,116, 1444–1472.

  • ——, B. D. Miner, and P. E. Ciesielski, 1995: Circulations between mesoscale convective systems along a cold front. Mon. Wea. Rev.,123, 585–599.

  • Klimowski, B. A., 1994: Initiation and development of rear inflow within the 28–29 June 1989 North Dakota mesoconvective system. Mon. Wea. Rev.,122, 765–779.

  • Klitch, M. A., J. F. Weaver, F. P. Kelly, and T. H. Vonder Haar, 1985:Convective cloud climatologies constructed from satellite imagery. Mon. Wea. Rev.,113, 326–337.

  • Lafore, J., and M. W. Moncrieff, 1989: A numerical investigation of the organization and interaction of the convective and stratiform regions of tropical squall lines. J. Atmos. Sci.,46, 521–544.

  • Laing, A. G., 1997: The large scale environment of mesoscale convective complexes: Comparisons with other deep convective weather systems. Preprints, 22d Conf. on Hurricanes, Fort Collins, CO, Amer. Meteor. Soc., 415–416.

  • Leary, C. A., and R. A. Houze Jr., 1979: Melting and evaporation of hydrometeors in precipitation from the anvil clouds of deep tropical convection. J. Atmos. Sci.,36, 669–679.

  • Leise, J. A., 1981: A multidimensional scale-telescoped filter and data extension package. NOAA Tech. Memo. ERL WPL-82, Wave Propagation Lab., Boulder CO, 20 pp. [NTIS N82-31994.].

  • LeMone, M. A., 1983: Momentum transport by a line of cumulonimbus. J. Atmos. Sci.,40, 1815–1834.

  • López, R. E., and R. L. Holle, 1986: Diurnal and spatial variability of lightning activity in northeastern Colorado and central Florida during the summer. Mon. Wea. Rev.,114, 1288–1312.

  • Maddox, R. A., 1980: Mesoscale convective complexes. Bull. Amer. Meteor. Soc.,61, 1374–1387.

  • ——, 1983: Large-scale meteorological conditions associated with midlatitude, mesoscale convective complexes. Mon. Wea. Rev.,111, 1475–1493.

  • ——, K. W. Howard, D. L. Bartels, and D. M. Rodgers, 1986: Mesoscale convective complexes in the middle latitudes. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 390–413.

  • Mapes, B. E., 1993: Gregarious tropical convection. J. Atmos. Sci.,50, 2026–2037.

  • McAnelly, R. L., and W. R. Cotton, 1986: Meso-β-scale characteristics of an episode of meso-α-scale convective complexes. Mon. Wea. Rev.,114, 1740–1770.

  • ——, and ——, 1992: Early growth of mesoscale convective complexes: A meso-β-scale cycle of convective precipitation? Mon. Wea. Rev.,120, 1851–1877.

  • ——, J. E. Nachamkin, W. R. Cotton, and M. E. Nicholls, 1997: Upscale evolution of MCSs: Doppler radar analysis and analytical investigation. Mon. Wea. Rev.,125, 1083–1110.

  • Miller, L. J., C. G. Mohr, and A. J. Weinheimer, 1986: The simple rectification to Cartesian space of folded radical velocities from Doppler radar sampling. J. Atmos. Oceanic Technol.,3, 162–174.

  • Mohr, C. G., L. J. Miller, R. L. Vaughn, and H. W. Frank, 1986: The merger of mesoscale datasets into a common Cartesian format for efficient and systematic analyses. J. Atmos. Oceanic Technol.,3, 143–161.

  • Nachamkin, J. E., 1998: Observational and numerical analysis of the genesis of a mesoscale convective system. Ph.D. dissertation, Dept. of Atmospheric Science Paper 643, Colorado State University, 219 pp. [Available from Dept. of Atmospheric Science, Colorado State University, Fort Collins, CO 80523.].

  • ——, and W. R. Cotton, 2000: Interactions between a developing mesoscale convective system and its environment. Part II: Numerical simulation. Mon. Wea. Rev.,128, 1225–1244.

  • ——, R. L. McAnelly, and W. R. Cotton, 1994: An observational analysis of a developing mesoscale convective complex. Mon. Wea. Rev.,122, 1168–1188.

  • Nicholls, M. E., R. A. Pielke, and W. R. Cotton, 1991: Thermally forced gravity waves in an atmosphere at rest. J. Atmos. Sci.,48, 1869–1884.

  • NOAA, 1993: Storm Data. Vol. 35, No. 7, National Oceanic and Atmospheric Administration, Asheville, NC, 300 pp.

  • Oye R., and R. Carbone, 1981: Interactive Doppler editing software. Preprints, 20th Conf. on Radar Meteorology, Boston, MA, Amer. Meteor. Soc., 683–689.

  • Pandya, R. D., and D. Durran, 1996: The influence of convectively generated thermal forcing on the mesoscale circulation around squall lines. J. Atmos. Sci.,53, 2925–2951.

  • ——, ——, and C. Bretherton, 1993: Comments on “Thermally forced gravity waves in an atmosphere at rest.” J. Atmos. Sci.,50, 4097–4101.

  • Parsons, D. B., C. G. Mohr, and T. Gal-Chen, 1987: A severe frontal rainband. Part III: Derived thermodynamic structure. J. Atmos. Sci.,44, 1615–1631.

  • Pratte, J. F., J. H. van Andel, D. G. Ferraro, R. W. Gagnon, S. M. Maher, and G. L. Blair, 1991: NCAR’s Mile High meteorological radar. Preprints, 25th Conf. on Radar Meteorology, Paris, France, Amer. Meteor. Soc., 863–866.

  • Rossby, C. G., 1938: Mutual adjustment of pressure and velocity distributions in certain simple current systems. J. Mar. Res.,2, 239–263.

  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci.,45, 463–485.

  • Rutledge, S. A., P. C. Kennedy, and D. A. Brunkow, 1993: Use of the CSU–CHILL radar in radar meteorology education at Colorado State University. Bull. Amer. Meteor. Soc.,74, 25–31.

  • Schmidt, J. M., and W. R. Cotton, 1990: Interactions between upper and lower tropospheric gravity waves on squall line structure and maintenance. J. Atmos. Sci.,47, 1205–1222.

  • Smith, R. B., 1989: Comment on “Low Froude number flow past three-dimensional obstacles. Part I: Baroclinically generated lee vortices.” J. Atmos. Sci.,46, 3611–3613.

  • Smolarkiewicz, P. K., and R. Rotunno, 1989: Low Froude number flow past three-dimensional obstacles. Part I: Baroclinically generated lee vortices. J. Atmos. Sci.,46, 1154–1164.

  • Smull, B. F., and R. A. Houze Jr., 1987: Rear inflow in squall lines with trailing stratiform precipitation. Mon. Wea. Rev.,115, 2869–2889.

  • ——, and J. A. Augustine, 1993: Multiscale analysis of a mature mesoscale convective complex. Mon. Wea. Rev.,121, 103–132.

  • Stumpf, G. J., R. H. Johnson, and B. F. Smull, 1991: The wake low in a midlatitude mesoscale convective system having complex convective organization. Mon. Wea. Rev.,119, 134–158.

  • Szoke, E. J., and R. H. Brady, 1989: Forecasting implications of the 26 July 1985 northeastern Colorado tornadic thunderstorm case. Mon. Wea. Rev.,117, 1834–1860.

  • ——, M. L. Weisman, J. M. Brown, F. Caracena, and T. W. Schlatter, 1984: A subsynoptic analysis of the Denver tornado of 3 June 1981. Mon. Wea. Rev.,112, 790–808.

  • Toth, J. J., and R. H. Johnson, 1985: Summer surface flow characteristics over northeastern Colorado. Mon. Wea. Rev.,113, 1458–1469.

  • Trier, S. B., and D. B. Parsons, 1993: Evolution of environmental conditions preceding the development of a nocturnal mesoscale convective complex. Mon. Wea. Rev.,121, 1078–1098.

  • Tripoli, G., and W. R. Cotton, 1989: A numerical study of an observed orogenic mesoscale convective system. Part I: Simulated genesis and comparison with observations. Mon. Wea. Rev.,117, 273–304.

  • Weisman, M. L., 1992: The role of convectively generated rear-inflow jets in the evolution of long-lived mesoconvective systems. J. Atmos. Sci.,49, 1826–1847.

  • Wetzel, P. J., W. R. Cotton, and R. L. McAnelly, 1983: A long-lived mesoscale convective complex. Part II: Evolution and structure of the mature complex. Mon. Wea. Rev.,111, 1919–1937.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 213 39 7
PDF Downloads 56 23 1