Interactions between a Developing Mesoscale Convective System and Its Environment. Part II: Numerical Simulation

Jason E. Nachamkin Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Jason E. Nachamkin in
Current site
Google Scholar
PubMed
Close
and
William R. Cotton Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by William R. Cotton in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The 19 July 1993 mesoscale convective system (MCS), discussed in Part I, was simulated using the Regional Atmospheric Modeling System (RAMS). The model was initialized with variable physiographic and atmospheric data with the goal of reproducing the convective system and its four-dimensional environment. Four telescopically nested, moving grids allowed for horizontal grid spacings down to 1.67 km on the cloud resolving grid. Comparisons with the analysis show that the propagation, evolution, and structure of this MCS were well simulated.

The simulation is used to further investigate the interactions between this MCS and its surrounding environment. In Part I, the Doppler-derived winds indicated that upshear (westward) propagating gravity waves left upper-tropospheric front-to-rear and midtropospheric rear-to-front flow perturbations in their wake. A similar flow structure developed in the simulated MCS, and unlike the Doppler results, the low-frequency waves that produced it were resolved in the data. In the simulation, much of the convectively generated temperature and momentum perturbations propagated westward with the waves, leaving a warm wake in the clear air trailing the system. Although the gravity waves traveled rearward, the perturbation flow in their wake was not strong enough to reverse the upper-tropospheric storm-relative winds. Thus, most of the anvil condensate advected ahead of the convective line.

As the MCS encountered the low-level jet, the midtropospheric upward mass flux increased, but gravity wave motions became less detectable. The upper-tropospheric anvil pushed westward into the strong flow as the system expanded into a characteristically oval shape. Temperature and momentum perturbations propagated rearward along with the anvil in a disturbance that resembled an advective outflow. Unlike the gravity waves, this disturbance became almost stationary with respect to the ground, and it retained its continuity through the rest of the simulation. Vertical cross sections indicate that a large slab of convectively processed air had detrained into the upper troposphere. Prior to this event, much of the warm temperature anomalies generated within the convective towers either remained in the updrafts, or propagated outward with the gravity waves. Early on, individual updrafts were relatively erect and although condensate did detrain eastward in the forward anvil, the temperature anomalies did not propagate with it. In contrast, convective updrafts associated with the expanding oval anvil disturbance were more continuous, and they tilted strongly westward with height.

* Current affiliation: Naval Research Laboratory, Monterey, California.

Corresponding author address: Dr. Jason Nachamkin, Naval Research Laboratory, 7 Grace Hopper Ave., Monterey, CA 13943.

Email: nachamkin@nrlmry.navy.mil

Abstract

The 19 July 1993 mesoscale convective system (MCS), discussed in Part I, was simulated using the Regional Atmospheric Modeling System (RAMS). The model was initialized with variable physiographic and atmospheric data with the goal of reproducing the convective system and its four-dimensional environment. Four telescopically nested, moving grids allowed for horizontal grid spacings down to 1.67 km on the cloud resolving grid. Comparisons with the analysis show that the propagation, evolution, and structure of this MCS were well simulated.

The simulation is used to further investigate the interactions between this MCS and its surrounding environment. In Part I, the Doppler-derived winds indicated that upshear (westward) propagating gravity waves left upper-tropospheric front-to-rear and midtropospheric rear-to-front flow perturbations in their wake. A similar flow structure developed in the simulated MCS, and unlike the Doppler results, the low-frequency waves that produced it were resolved in the data. In the simulation, much of the convectively generated temperature and momentum perturbations propagated westward with the waves, leaving a warm wake in the clear air trailing the system. Although the gravity waves traveled rearward, the perturbation flow in their wake was not strong enough to reverse the upper-tropospheric storm-relative winds. Thus, most of the anvil condensate advected ahead of the convective line.

As the MCS encountered the low-level jet, the midtropospheric upward mass flux increased, but gravity wave motions became less detectable. The upper-tropospheric anvil pushed westward into the strong flow as the system expanded into a characteristically oval shape. Temperature and momentum perturbations propagated rearward along with the anvil in a disturbance that resembled an advective outflow. Unlike the gravity waves, this disturbance became almost stationary with respect to the ground, and it retained its continuity through the rest of the simulation. Vertical cross sections indicate that a large slab of convectively processed air had detrained into the upper troposphere. Prior to this event, much of the warm temperature anomalies generated within the convective towers either remained in the updrafts, or propagated outward with the gravity waves. Early on, individual updrafts were relatively erect and although condensate did detrain eastward in the forward anvil, the temperature anomalies did not propagate with it. In contrast, convective updrafts associated with the expanding oval anvil disturbance were more continuous, and they tilted strongly westward with height.

* Current affiliation: Naval Research Laboratory, Monterey, California.

Corresponding author address: Dr. Jason Nachamkin, Naval Research Laboratory, 7 Grace Hopper Ave., Monterey, CA 13943.

Email: nachamkin@nrlmry.navy.mil

Save
  • Anderson, C. J., and R. W. Arritt, 1998: Mesoscale convective complexes and persistent elongated convective systems over the United States during 1992 and 1993. Mon. Wea. Rev.,126, 578–599.

  • Avissar, R., and Y. Mahrer, 1988: Mapping frost-sensitive areas with a three-dimensional local-scale numerical model. Part I: Physical and numerical aspects. J. Appl. Meteor.,27, 400–413.

  • Bartels, D. L., and R. A. Maddox, 1991: Midlevel cyclonic vortices generated by mesoscale convective systems. Mon. Wea. Rev.,119, 104–118.

  • Benjamin, S. G., K. A. Brewster, R. Brümmer, B. F. Jewett, T. W. Schlatter, T. L. Smith, and P. A. Stamus, 1991: An isentropic three-hourly data assimilation system system using ACARS aircraft observations. Mon. Wea. Rev.,119, 888–906.

  • Blanchard, D. O., W. R. Cotton, and J. M. Brown, 1998: Mesoscale circulation growth under conditions of weak inertial stability. Mon. Wea. Rev.,126, 118–140.

  • Bluestein, H. B., and M. H. Jain, 1985: Formation of mesoscale lines of precipitation: Severe squall lines in Oklahoma during the spring. J. Atmos. Sci.,42, 1711–1732.

  • Bosart, L. F., and F. Sanders, 1981: The Johnstown flood of July 1977:A long-lived convective system. J. Atmos. Sci.,38, 1616–1642.

  • Bretherton, C. S., and P. K. Smolarkiewicz, 1989: Gravity waves, compensating subsidence, and detrainment around cumulus clouds. J. Atmos. Sci.,46, 740–759.

  • Brown, J. M., 1979: Mesoscale unsaturated downdrafts driven by rainfall evaporation: A numerical study. J. Atmos. Sci.,36, 313–338.

  • Clark, T. L., and R. D. Farley, 1984: Severe downslope windstorm calculations in two and three spatial dimensions using anelastic interactive grid nesting: A possible mechanism for gustiness. J. Atmos. Sci.,41, 329–350.

  • ——, and W. D. Hall, 1991: Multi-domain simulations of the time dependent Navier–Stokes equations: Benchmark error analysis of some nesting procedures. J. Comput. Phys.,92, 456–481.

  • Cotton, W. R., and R. A. Anthes, 1989: Storm and Cloud Dynamics. International Geophysics Series, Vol. 44, Academic Press, 883 pp.

  • ——, M. S. Lin, R. L. McAnelly, and C. J. Tremback, 1989: A composite model of mesoscale convective complexes. Mon. Wea. Rev.,117, 765–783.

  • Davies, H. C., 1983: Limitations of some common lateral boundary schemes used in regional NWP models. Mon. Wea. Rev.,111, 1002–1012.

  • Fovell, R., D. R. Durran, and J. R. Holton, 1992: Numerical simulations of of convectively generated stratospheric gravity waves. J. Atmos. Sci.,49, 1427–1442.

  • Fritsch, J. M., J. D. Murphy, and J. S. Kain, 1994: Warm core vortex amplification over land. J. Atmos. Sci.,51, 1780–1807.

  • Hill, G. E., 1974: Factors controlling the size and spacing of cumulus clouds as revealed by numerical experiments. J. Atmos. Sci.,31, 646–673.

  • Johnson, R. H., and D. L. Bartels, 1992: Circulations associated with a mature-to-decaying midlatitude mesoscale convective system:Part II: Upper-level features. Mon. Wea. Rev.,120, 1301–1320.

  • ——, B. D. Miner, and P. E. Ciesielski, 1995: Circulations between mesoscale convective systems along a cold front. Mon. Wea. Rev.,123, 585–599.

  • Kain, J. S., and J. M. Fritsch, 1998: Multiscale convective overturning in mesoscale convective systems: Reconciling observations, simulations and theory. Mon. Wea. Rev.,126, 2254–2273.

  • Klemp, J. B., and R. B. Wilhelmson, 1978a: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci.,35, 1070–1096.

  • ——, and ——, 1978b: Simulations of right- and left-moving storms produced through storm splitting. J. Atmos. Sci.,35, 1097–1110.

  • Klimowski, B. A., 1994: Initiation and development of rear inflow within the 28–29 June 1989 North Dakota mesoconvective system. Mon. Wea. Rev.,122, 765–779.

  • Knupp, K. R., B. Geerts, and J. D. Tuttle, 1998: Analysis of a small, vigorous mesoscale convective system in a low-shear environment. Part II: Evolution of the stratiform precipitation and mesoscale flows. Mon. Wea. Rev.,126, 1837–1858.

  • Laing, A. G., and J. M. Fritsch, 1997: The global population of mesoscale convective complexes. Quart. J. Royal Meteor. Soc.,123, 389–405.

  • LeMone, M. A., 1983: Momentum transport by a line of cumulonimbus. J. Atmos. Sci.,40, 1815–1834.

  • Lilly, D. K., 1962: On the numerical simulation of buoyant convection. Tellus,XIV, 148–172.

  • Louis, J. F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor.,17, 187–202.

  • Loveland, T. R., J. W. Merchant, D. O. Ohlen, and J. F. Brown, 1991:Development of a land-cover characteristics database for the conterminous U.S. Photogramm. Eng. Remote Sens.,57, 1453–1463.

  • Maddox, R. A., 1980: Mesoscale convective complexes. Bull. Amer. Meteor. Soc.,61, 1374–1387.

  • ——, 1983: Large-scale meteorological conditions associated with midlatitude, mesoscale convective complexes. Mon. Wea. Rev.,111, 1475–1493.

  • Mahrer, Y., and R. A. Pielke, 1977: A numerical study of the airflow over irregular terrain. Beitr. Phys. Atmos.,50, 98–113.

  • Mapes, B. E., 1993: Gregarious tropical convection. J. Atmos. Sci.,50, 2026–2037.

  • McAnelly, R. L., and W. R. Cotton, 1986: Meso-β-scale characteristics of an episode of meso-α-scale convective complexes. Mon. Wea. Rev.,114, 1740–1770.

  • ——, J. E. Nachamkin, W. R. Cotton, and M. E. Nicholls, 1997: Upscale evolution of MCSs: Doppler radar analysis and analytical investigation. Mon. Wea. Rev.,125, 1083–1110.

  • Nachamkin, J. E., 1998: Observational and numerical analysis of the genesis of a mesoscale convective system. Ph.D. dissertation, Dept. of Atmospheric Science Paper 643, Colorado State University, 219 pp. [Available from Dept. of Atmospheric Science, Colorado State University, Fort Collins, CO 80523.].

  • ——, and W. Cotton, 1998: Interacting solenoidal circulations and their role in convective orogenesis. Preprints, Eighth Conf. on Mountain Meteorology, Flagstaff, AZ, Amer. Meteor. Soc., 297–301.

  • ——, R. L. McAnelly, and W. R. Cotton, 1994: An observational analysis of a developing mesoscale convective complex. Mon. Wea. Rev.,122, 1168–1188.

  • ——, ——, and ——, 2000: Interactions between a developing mesoscale convective system and its environment. Part I: Observational analysis. Mon. Wea. Rev.,128, 1205–1224.

  • Nicholls, M. E., R. A. Pielke, and W. R. Cotton, 1991: Thermally forced gravity waves in an atmosphere at rest. J. Atmos. Sci.,48, 1869–1884.

  • Olsson, P. Q., and W. R. Cotton, 1997: Balanced and unbalanced circulations in a primitive equation simulation of a midlatitude MCC. Part II: Analysis of balance. J. Atmos. Sci.,54, 479–497.

  • Pandya, R. D., and D. Durran, 1996: The influence of convectively generated thermal forcing on the mesoscale circulation around squall lines. J. Atmos. Sci.,53, 2925–2951.

  • ——, ——, and C. Bretherton, 1993: Comments on “Thermally forced gravity waves in an atmosphere at rest.” J. Atmos. Sci.,50, 4097–4101.

  • Pielke, R. A., and Coauthors, 1992: A comprehensive meteorological modeling system—RAMS. Meteor. Atmos. Phys.,49, 69–91.

  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci.,45, 463–485.

  • Schmidt, J. M., and W. R. Cotton, 1990: Interactions between upper and lower tropospheric gravity waves on squall line structure and maintenance. J. Atmos. Sci.,47, 1205–1222.

  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. Part I: The basic experiment. Mon. Wea. Rev.,91, 99–164.

  • Smull, B. F., and R. A. Houze Jr., 1987: Rear inflow in squall lines with trailing stratiform precipitation. Mon. Wea. Rev.,115, 2869–2889.

  • Szoke, E. J., M. L. Weisman, J. M. Brown, F. Caracena, and T. W. Schlatter, 1984: A subsynoptic analysis of the Denver tornado of 3 June 1981. Mon. Wea. Rev.,112, 790–808.

  • Tremback, C. J., and R. Kessler, 1985: A surface temperature and moisture parameterization for use in mesoscale numerical models. Preprints, Seventh Conf. on Numerical Weather Prediction, Montreal, PQ, Canada, Amer. Meteor. Soc., 433–434.

  • Tripoli, G., and W. R. Cotton, 1989: A numerical study of an observed orogenic mesoscale convective system. Part I: Simulated genesis and comparison with observations. Mon. Wea. Rev.,117, 273–304.

  • Velasco, I., and J. M. Fritsch, 1987: Mesoscale convective complexes in the Americas. J. Geophys. Res.,92, 9591–9613.

  • Walko, R., W. R. Cotton, M. P. Meyers, and J. Y. Harrington, 1995:New RAMS cloud microphysics parameterization. Part I: The single-moment scheme. Atmos. Res.,38, 29–62.

  • Wetzel, P. J., and J. T. Chang, 1988: Evapotranspiration from nonuniform surfaces: A first approach for short-term numerical weather prediction. Mon. Wea. Rev.,116, 600–621.

  • Yuter, S. E., and R. A. Houze Jr., 1995a: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part I: Spatial distribution of updrafts, downdrafts, and precipitation. Mon. Wea. Rev.,123, 1921–1940.

  • ——, and ——, 1995b: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev.,123, 1941–1963.

  • ——, and ——, 1995c: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part III: Vertical mass transport, mass divergence, and synthesis. Mon. Wea. Rev.,123, 1964–1983.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 190 50 8
PDF Downloads 56 20 2