A Semi-implicit Semi-Lagrangian Finite-Element Shallow-Water Ocean Model

Daniel Y. Le Roux Department of Atmospheric and Oceanic Sciences, and Centre for Climate and Global Change Research, McGill University, and Centre de Recherche en Calcul Appliqué, Montreal, Quebec, Canada

Search for other papers by Daniel Y. Le Roux in
Current site
Google Scholar
PubMed
Close
,
Charles A. Lin Department of Atmospheric and Oceanic Sciences, and Centre for Climate and Global Change Research, McGill University, and Centre de Recherche en Calcul Appliqué, Montreal, Quebec, Canada

Search for other papers by Charles A. Lin in
Current site
Google Scholar
PubMed
Close
, and
Andrew Staniforth Meteorological Research Branch, Environment Canada, Dorval, Quebec, Canada

Search for other papers by Andrew Staniforth in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The finite-element, semi-implicit, and semi-Lagrangian methods are combined together to solve the shallow-water equations using unstructured triangular meshes. Triangular finite elements are attractive for ocean modeling because of their flexibility for representing irregular boundaries and for local mesh refinement. A kriging interpolator is used for the semi-Lagrangian advection, leading to an accurate representation of the slow Rossby modes. The terms that govern fast gravitational oscillations are discretized using the semi-implicit scheme, thereby circumventing a severe time step restriction. A low-order velocity–surface-elevation finite-element basis-function pair is used for the spatial discretization. Results of test problems to simulate slowly propagating Rossby modes illustrate the promise of the proposed approach for ocean modeling.

* Current affiliation: National Center for Atmospheric Research, Advanced Study Program, Boulder, Colorado.

Current affiliation: U.K. Meteorological Office, Bracknell, Berkshire, United Kingdom.

Corresponding author address: Dr. Daniel Y. Le Roux, Dept. of Atmospheric and Oceanic Sciences, McGill University, Centre for Climate and Global Change Research, Montreal PQ H3A 2K6, Canada.

Email: dleroux@cerca.umontreal.ca

Abstract

The finite-element, semi-implicit, and semi-Lagrangian methods are combined together to solve the shallow-water equations using unstructured triangular meshes. Triangular finite elements are attractive for ocean modeling because of their flexibility for representing irregular boundaries and for local mesh refinement. A kriging interpolator is used for the semi-Lagrangian advection, leading to an accurate representation of the slow Rossby modes. The terms that govern fast gravitational oscillations are discretized using the semi-implicit scheme, thereby circumventing a severe time step restriction. A low-order velocity–surface-elevation finite-element basis-function pair is used for the spatial discretization. Results of test problems to simulate slowly propagating Rossby modes illustrate the promise of the proposed approach for ocean modeling.

* Current affiliation: National Center for Atmospheric Research, Advanced Study Program, Boulder, Colorado.

Current affiliation: U.K. Meteorological Office, Bracknell, Berkshire, United Kingdom.

Corresponding author address: Dr. Daniel Y. Le Roux, Dept. of Atmospheric and Oceanic Sciences, McGill University, Centre for Climate and Global Change Research, Montreal PQ H3A 2K6, Canada.

Email: dleroux@cerca.umontreal.ca

Save
  • Bates, J. R., and A. McDonald, 1982: Multiply-upstream, semi-Lagrangian advective schemes: Analysis and application to a multilevel primitive equation model. Mon. Wea. Rev.,112, 1831–1842.

  • ——, F. H. M. Semazzi, R. W. Higgins, and S. R. M. Barros, 1990:Integration of the shallow-water equations on the sphere using a vector semi-Lagrangian scheme with a multigrid solver. Mon. Wea. Rev.,118, 1615–1627.

  • Boyd, J. P., 1980: Equatorial solitary waves. Part I: Rossby solitons. J. Phys. Oceanogr.,10, 1699–1717.

  • ——, 1985: Equatorial solitary waves. Part III: Westward-traveling modons. J. Phys. Oceanogr.,15, 46–54.

  • Brooks, D. A., 1984: Current and hydrographic variability in the northwestern Gulf of Mexico. J. Geophys. Res.,89, 8022–8032.

  • Bryan, F. O., and R. D. Smith, 1998: Modelling the North Atlantic circulation: From eddy permitting to eddy-resolving. International WOCE Newsletter 33, International Woce Project Office, Southampton, 12–13. [Available from Dr. Frank Bryan, National Center for Atmospheric Research, Boulder, CO 80307-3000.].

  • Bryan, K., 1963: A numerical investigation of a non linear model of a wind driven ocean. J. Atmos. Sci.,20, 594–606.

  • ——, 1969: A numerical method for the study of the circulation of the World Ocean. J. Comput. Phys.,4, 347–376.

  • ——, and M. D. Cox, 1967: A numerical investigation of the oceanic general circulation. Tellus,19, 54–80.

  • ——, and ——, 1968a: A non linear model of an ocean driven by wind and differential heating. Part I: Description of the three-dimensional velocity and density fields. J. Atmos. Sci.,25, 945–967.

  • ——, and ——, 1968b: A non linear model of an ocean driven by wind and differential heating. Part II. An analysis of the heat, vorticity and energy balance. J. Atmos. Sci.,25, 968–978.

  • Chervin, R. M., and A. J. Semtner, 1990: An ocean modeling system for supercomputer architectures of the 1990s. Climate–Ocean Interactions, M. E. Schlesinge, Ed., Kluwer Academic, 87–95.

  • Connor, J. J., and J. D. Wang, 1974: Finite-element modeling of hydrodynamic circulation. Numerical Methods Fluid Dynamics, Pentech Press, 355–367.

  • Cox, M. D., 1970: A mathematical model of the Indian Ocean. Deep-Sea Res.,17, 47–75.

  • Dukowicz, J. K., and R. D. Smith, 1994: Implicit free-surface method for the Bryan–Cox–Semtner Ocean Model. J. Geophys. Res.,99, 7991–8014.

  • Dumas, E., C. Le Provost, and A. Poncet, 1982: Feasability of finite-element methods for oceanic general circulation modeling. Vol. 5, 4th International Conference on Finite Element in Water resources, Springer-Verlag, 43–55.

  • Elliott, B. A., 1982: Anticyclonic rings in the Gulf of Mexico. J. Phys. Oceanogr.,12, 1292–1309.

  • Engelman, M. S., R. L. Sani, and P. M. Gresho, 1982: The implementation of normal and/or tangential boundary conditions in finite-element codes for incompressible fluid flow. Int. J. Numer. Methods Fluids,2, 225–238.

  • Fix, G. J., 1975: Finite element models for ocean circulation problems. SIAM, J. Appl. Math.,29, 371–387.

  • Fjørtoft, R., 1952: On a numerical method of integrating the barotropic vorticity equation. Tellus,4, 179–194.

  • Gill, A. E., and K. Bryan, 1971: Effects of geometry on the circulation of a three dimensional Southern Hemisphere ocean. Deep-Sea Res.,18, 685–721.

  • Gray, W. G., 1984: On normal flow boundary conditions in finite-element codes for two-dimensional shallow-water flow. Int. J. Numer. Methods Fluids,4, 99–104.

  • Grotkop, G., 1973: Finite-element analysis of long-period water waves. Comput. Methods Appl. Mech. Eng.,2, 147–157.

  • Haidvogel, D. B., A. R. Robinson, and E. E. Schulman, 1980: The accuracy, effiency and stability of three numerical models with application to open ocean problems. J. Comput. Phys.,34, 1–53.

  • Holland, W. R., 1971: Ocean tracer distributions. Tellus,23, 371–392.

  • ——, 1978: The role of mesoscale eddies in the general circulation of the ocean. J. Phys. Oceanogr.,8, 363–392.

  • ——, and A. D. Hirschman, 1972: A numerical calculation of the circulation in the North Atlantic Ocean. J. Phys. Oceanogr.,2, 336–354.

  • ——, and L. B. Lin, 1975: On the generation of mesoscale eddies and their contribution to the oceanic general circulation. J. Phys. Oceanogr.,5, 642–669.

  • Hurlburt, E. H., and J. D. Thompson, 1980: A numerical study of loop current intrusions and eddy shedding. J. Phys. Oceanogr.,10, 1611–1651.

  • Iskandarani, M., D. Haidvogel, and J. Boyd, 1995: A staggered spectral finite element model for the shallow-water equations. Int. J. Numer. Methods Fluids,20, 393–414.

  • Kirwan, A. D., Jr., J. K. Lewis, A. W. Indest, P. Reinersman, and I. Quintero, 1988: Observed and simulated kinematic properties of loop current rings. J. Geophys. Res.,93, 1189–1198.

  • Kolmogorov, A., and S. V. Fomin, 1961: Elements of the Theory of Functions and Functional Analysis. Graylock Press.

  • LeBlond, P. H., and L. A. Mysak, 1978: Waves in the Ocean. Elsevier, 602 pp.

  • Le Provost, C., 1984: An application of finite-element methods for modeling wind driven circulations in a stratified ocean. 5th Internatinal Conference on Finite Elements in Water Resources, Springer-Verlag, 567–576.

  • ——, 1986: On the use of finite-element methods for ocean modeling. Advanced Physical Oceanographic Numerical Modeling. NATO-ASI Series, Vol. 186, D. Reidel, 557–580.

  • ——, and P. Vincent, 1991: Finite element for modeling ocean tides. Tidal Hydrodynamics, B. Parker, Ed., John Wiley and Sons, 41–60.

  • ——, C. Bernier, and E. Blayo, 1993: An intercomparison of two numerical methods for integrating a quasi-geostrophic multilayer model of ocean circulations. J. Comput. Phys.,110, 341–359.

  • Le Roux, D. Y., C. A. Lin, and A. Staniforth, 1997: An accurate interpolating scheme for semi-Lagrangian advection on an unstructured mesh for ocean modeling. Tellus,49, 119–138.

  • ——, A. Staniforth, and C. A. Lin, 1998: Finite elements for shallow water equation ocean models. Mon. Wea. Rev.,126, 1931–1951.

  • Lewis, J. K., and A. D. Kirwan, 1987: Genesis of a Gulf of Mexico ring as determined from kinematic analyses. J. Geophys. Res.,92, 11 727–11 740.

  • Ma, H., 1993: A spectral element basin model for the shallow-water equations. J. Comput. Phys.,109, 133–149.

  • Matheron, G., 1980: Splines et krigeage: Leur équivalence formelle. Rapport N-667, 25 pp. [Available from Centre de Géostatistique, Ecole des Mines de Paris, Fontainebleau, France.].

  • McCalpin, J. D., 1988: A quantitative analysis of the dissipation inherent in semi-Lagrangian advection. Mon. Wea. Rev.,116, 2330–2336.

  • McDonald, A., 1984: Accuracy of multiply-upstream semi-Lagrangian advective schemes. Mon. Wea. Rev.,112, 1267–1275.

  • ——, and J. R. Bates, 1987: Improving the estimate of the departure point position in a two-time level semi-Lagrangian and semi-implicit scheme. Mon. Wea. Rev.,115, 737–739.

  • Merrell, W. J., and J. M. Morrison, 1981: On the circulation of the western Gulf of Mexico with observations from April 1978. J. Geophys. Res.,86, 4181–4185.

  • ——, and A. M. Vasquez, 1983: Observations of changing mesoscale circulation patterns in the western Gulf of Mexico. J. Geophys. Res.,88, 7721–7723.

  • Munk, W. H., 1950: On the wind driven ocean circulation. J. Meteor.,7, 79–93.

  • Ortega, J. M., and W. C. Rheinboldt, 1970: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, 572 pp.

  • Pedlosky, J., 1979: Geophysical Fluid Dynamics. Springer-Verlag, Berlin, 624 pp.

  • Pudykiewicz, J., and A. Staniforth, 1984: Some properties and comparative performance of the semi-Lagrangian method of Robert in the solution of the advection–diffusion equation. Atmos.–Ocean.,22, 283–308.

  • ——, R. Benoit, and A. Staniforth, 1985: Preliminary results from a partial LRTAP model based on an existing meteorological forecast model. Atmos.–Ocean.,23, 267–303.

  • Purnell, D. K., 1976: Solution of the advective equation by upstream interpolation with a cubic spline. Mon. Wea. Rev.,104, 42–48.

  • Rasch, P., and D. Williamson, 1990: Computational aspects of moisture transport in global models of the atmosphere. Quart. J. Roy. Meteor. Soc.,116, 1071–1090.

  • Robert, A., 1969: The integration of a spectral model of the atmosphere by the implicit method. Proc. of the WMO/IUGG Symp. on Numerical Weather Prediction, Tokyo, Japan, Japan. Meteor. Agency, 19–24.

  • ——, 1981: A stable numerical integration scheme for the primitive meteorological equations. Atmos.–Ocean.,19, 35–46.

  • ——, 1982: A semi-Lagrangian and semi-implicit numerical integration scheme for the primitive meteorological equations. Japan Meteor. Soc.,60, 319–325.

  • ——, J. Henderson, and C. Turnbull, 1972: An implicit time integration scheme for baroclinic models of the atmosphere. Mon. Wea. Rev.,100, 329–335.

  • ——, T. L. Yee, and H. Ritchie, 1985: A semi-Lagrangian and semi-implicit numerical integration scheme for multilevel atmospheric models. Mon. Wea. Rev.,113, 388–394.

  • Sani, R. L., P. M. Gresho, R. L. Lee, and D. Griffiths, 1981a: The cause and cure (!) of the spurious pressures generated by certain FEM solutions of the incompressible Navier–Stokes equations. Part I. Int. J. Numer. Methods Fluids,1, 17–43.

  • ——, ——, ——, and ——, 1981b: The cause and cure (!) of the spurious pressures generated by certain FEM solutions of the incompressible Navier–Stokes equations. Part II. Int. J. Numer. Methods. Fluids,1, 171–204.

  • Sarkisyan, A. S., 1955: The calculation of stationary wind currents in an ocean. Izv. Akad. Nauk SSSR, Ser. Geofiz.,6, 554–561.

  • Sawyer, J. S., 1963: A semi-Lagrangian method of solving the vorticity advection equation. Tellus,15, 336–342.

  • Semtner, A. J., and R. M. Chervin, 1988: A simulation of the global ocean with resolved eddies. J. Geophys. Res.,93, 15 502–15 522.

  • Stammer, D., R. Tokmakian, A. Semtner, and C. Wunsch, 1996: How well does a ¼° global circulation model simulate large-scale oceanic observations? J. Geophys. Res.,101, 25 779–25 811.

  • Staniforth, A., and J. Pudykiewicz, 1985: Reply to comments on and addenda to some properties and comparative performance of the semi-Lagrangian method of Robert in the solution of the advection–diffusion equation. Atmos.–Ocean.,23, 195–200.

  • ——, and J. Côté, 1991: Semi-Lagrangian integration schemes for atmospheric models: A review. Mon. Wea. Rev.,119, 2206–2223.

  • Stoer, J., and R. Bulirsch, 1993: Introduction to Numerical Analysis. Springer-Verlag, 660 pp.

  • Stommel, H. M., 1948: The westward intensification of the wind driven ocean currents. Trans. Amer. Geophys. Union,29, 202–206.

  • Sverdrup, H. U., 1947: Wind driven currents in a barotropic ocean, with application to the equatorial currents of the Eastern Pacific. Proc. U. S. Nat. Acad. Sci.33, 318–326.

  • Taylor, C., and J. M. Davies, 1975: Tidal propagation and dispersion in estuaries. Finite Element in Fluids, R. H. Gallagher, J. T. Oden, C. Taylor, and O. C. Zinkiewicz, Eds., John Wiley, 95–118.

  • Taylor, M., J. Tribbia, and M. Iskandarani, 1997: The spectral element method for the shallow-water equations on the sphere. J. Comput. Phys.,130, 92–108.

  • Temperton, C., and A. Staniforth, 1987: An efficient two-time level semi-Lagrangian semi-implicit integration scheme. Quart. J. Roy. Meteor. Soc.,113, 1025–1039.

  • Trochu, F., 1993: A contouring program based on dual kriging interpolation. Eng. Comput.,9, 160–177.

  • Vukovich, F. M., and B. W. Crissman, 1986: Aspects of warm rings in the Gulf of Mexico. J. Geophys. Res.,91, 2645–2660.

  • Westerink, J. J., and W. G. Gray, 1991: Progress in surface water modeling. Rev. Geophys.,29, 210–217.

  • Wiin-Nielsen, A., 1959: On the application of trajectory methods to numerical forecasting. Tellus,11, 180–196.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 349 140 8
PDF Downloads 107 40 6