Abstract
It is formally proved that the general smoother for nonlinear dynamics can be formulated as a sequential method, that is, observations can be assimilated sequentially during a forward integration. The general filter can be derived from the smoother and it is shown that the general smoother and filter solutions at the final time become identical, as is expected from linear theory. Then, a new smoother algorithm based on ensemble statistics is presented and examined in an example with the Lorenz equations. The new smoother can be computed as a sequential algorithm using only forward-in-time model integrations. It bears a strong resemblance with the ensemble Kalman filter. The difference is that every time a new dataset is available during the forward integration, an analysis is computed for all previous times up to this time. Thus, the first guess for the smoother is the ensemble Kalman filter solution, and the smoother estimate provides an improvement of this, as one would expect a smoother to do. The method is demonstrated in this paper in an intercomparison with the ensemble Kalman filter and the ensemble smoother introduced by van Leeuwen and Evensen, and it is shown to be superior in an application with the Lorenz equations. Finally, a discussion is given regarding the properties of the analysis schemes when strongly non-Gaussian distributions are used. It is shown that in these cases more sophisticated analysis schemes based on Bayesian statistics must be used.
Corresponding author address: Geir Evensen, Nansen Environmental and Remote Sensing Center, Edvard Griegsvei 3a, N-5037 Solheimsviken, Norway.
Email: Geir.Evensen@nrsc.no