• Aris, R., 1962: Vectors, Tensors and the Basic Equations of Fluid Mechanics. Dover, 286 pp.

  • Batchelor, G. K., 1967: An Introduction to Fluid Dynamics. Cambridge University Press, 615 pp.

  • Bleck, R., and D. B. Boudra, 1981: Initial testing of a numerical ocean circulation model using a hybrid- (quasi-isopycnic) vertical coordinate. J. Phys. Oceanogr.,11, 755–770.

  • ——, C. Rooth, D. Hu, and L. T. Smith, 1992: Salinity-driven thermocline transients in a wind and thermohaline forced isopycnic coordinate model of the North Atlantic. J. Phys. Oceanogr.,22, 1486–1505.

  • Blumberg, A. F., and G. L. Mellor, 1987: A description of a three-dimensional coastal ocean circulation model. Three-Dimensional Coastal Ocean Models, N. Heaps, Ed., Vol. 4, Amer. Geophys. Union, 1–16.

  • Boer, G. J., and T. G. Shepherd, 1983: Large-scale two-dimensional turbulence in the atmosphere. J. Atmos. Sci.,40, 164–184.

  • Böning, C. W., and R. G. Budich, 1992: Eddy dynamics in a primitive equation model: Sensitivity to horizontal resolution and friction. J. Phys. Oceanogr.,22, 361–381.

  • Bryan, K., 1969: A numerical method for the study of the circulation of the world ocean. J. Comput. Phys.,4, 347–376.

  • ——, S. Manabe, and R. C. Pacanowski, 1975: A global ocean-atmosphere climate model. Part II. The oceanic circulation. J. Phys. Oceanogr.,5, 30–46.

  • Galperin, B., and S. A. Orszag, 1993: Large Eddy Simulation of Complex Engineering and Geophysical Flows. Cambridge University Press, 600 pp.

  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Gille, S. T., 1997: The southern ocean momentum balance: Evidence for topographic effects from numerical model output and altimeter data. J. Phys. Oceanogr.,27, 2219–2232.

  • Griffies, S. M., A. Gnanadesikan, R. C. Pacanowski, V. Larichev, J. K. Dukowicz, and R. D. Smith, 1998: Isoneutral diffusion in a z-coordinate ocean model. J. Phys. Oceanogr.,28, 805–830.

  • ——, R. C. Pacanowski, and R. W. Hallberg, 2000: Spurious diapycnal mixing associated with advection in a z-coordinate ocean model. Mon. Wea. Rev.,128, 538–564.

  • Haidvogel, D. B., J. L. Wilkin, and R. Young, 1991: A semi-spectral primitive equation ocean circulation model using vertical sigma and orthogonal curvilinear horizontal coordinates. J. Comput. Phys.,94, 151–185.

  • Hallberg, R., 1995: Some aspects of the circulation in ocean basins with isopycnals intersecting the sloping boundaries. Ph.D thesis, University of Washington, 244 pp. [Available from Dept. of Oceanography, University of Washington, Seattle, WA.].

  • Haltiner, G. J., and R. T. Williams, 1980: Numerical Prediction and Dynamic Meteorology. Wiley, 477 pp.

  • Held, I. M., R. T. Pierrehumbert, S. T. Garner, and K. L. Swanson, 1995: Surface quasi-geostrophic dynamics. J. Fluid Mech.,282, 1–20.

  • Holland, W. R., 1978: The role of mesoscale eddies in the general circulation of the ocean—Numerical experiments using a wind-driven quasi-geostrophic model. J. Phys. Oceanogr.,8, 363–392.

  • ——, J. C. Chow, and F. O. Bryan, 1998: Application of a third-order upwind scheme in the NCAR ocean model. J. Climate,11, 1487–1493.

  • Kazantsev, E., J. Sommeria, and J. Verron, 1998: Subgrid-scale eddy parameterization by statistical mechanics in a barotropic ocean model. J. Phys. Oceanogr.,28, 1017–1042.

  • Large, W. K., G. Danabasoglu, J. C. McWilliams, P. R. Gent, and F. O. Bryan, 2000: Equatorial circulation of a global ocean climate model with anisotropic horizontal viscosity. J. Phys. Oceanogr., in press.

  • Leith, C. E., 1968: Diffusion approximation for two-dimensional turbulence. Phys. Fluids,10, 1409–1416.

  • Leith, C. E. 1996: Stochastic models of chaotic systems. Physica D,98, 481–491.

  • Leonard, B. P., 1979: A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comput. Methods Appl. Mech. Eng.,19, 59–98.

  • Luyten, J. R., J. Pedlosky, and H. Stommel, 1983: The ventilated thermocline. J. Phys. Oceanogr.,13, 292–309.

  • Madec, G., and M. Imbard, 1996: A global ocean mesh to overcome the North Pole singularity. Climate Dyn.,12, 381–388.

  • Munk, W. H., 1950: On the wind-driven ocean circulation. J. Meteor.,7, 3–29.

  • Pacanowski, R. C., and S. M. Griffies, 1999: The MOM 3 manual. Geophysical Fluid Dynamics Laboratory Tech. Rep., Princeton, NJ, 680 pp. [Available online via anonymous ftp from GFDL.gov.].

  • Rhines, P. B., 1977: The dynamics of unsteady currents. The Sea, E. D. Goldberg et al., Eds., Vol. 6, Wiley-Interscience, 189–318.

  • Rosati, A., and K. Miyakoda, 1988: A general circulation model for upper ocean simulation. J. Phys. Oceanogr.,18, 1601–1626.

  • Sadourny, R., and C. Basdevant, 1985: Parameterization of subgrid scale barotropic and baroclinic eddies in quasi-geostrophic models: Anticipated potential vorticity method. J. Atmos. Sci.,42, 1353–1363.

  • ——, and K. Maynard, 1997: Formulations of lateral diffusion in geophysical fluid dynamics models. Numerical Methods in Atmospheric and Oceanic Modelling, C. A. Lin, R. Laprise, and H. Ritchie, Eds., NRC Research Press, 547–556.

  • Salmon, R., 1998: Lectures on Geophysical Fluid Dynamics. Oxford University Press, 378 pp.

  • Semtner, A. J., and Y. Mintz, 1977: Numerical simulation of the Gulf Stream and mid-ocean eddies. J. Phys. Oceanogr.,7, 208–230.

  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations: I. The basic experiment. Mon. Wea. Rev.,91, 99–164.

  • Smagorinsky, J., 1993: Some historical remarks on the use of nonlinear viscosities. Large Eddy Simulation of Complex Engineering and Geophysical Flows, B. Galperin and S. A. Orszag, Eds., Cambridge University Press, 3–36.

  • Smith, R. D., S. Kortas, and B. Meltz, 1995: Curvilinear coordinates for global ocean models. Los Alamos Rep. LA-UR-95-1146, 52 pp. [Available from Los Alamos National Laboratory, Group T-3, Los Alamos, N.M. 87545.].

  • ——, M. E. Maltrud, F. O. Bryan, and M. W. Hecht, 2000: Numerical simulation of the North Atlantic Ocean at 1/10°. J. Phys. Oceanogr.,30, 1532–1561.

  • Wajsowicz, R. C., 1993: A consistent formulation of the anisotropic stress tensor for use in models of the large-scale ocean circulation. J. Comput. Phys.,105, 333–338.

  • Williams, G. P., 1972: Friction term formulation and convective instability in a shallow atmosphere. J. Atmos. Sci.,29, 870–876.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 154 154 19
PDF Downloads 147 147 23

Biharmonic Friction with a Smagorinsky-Like Viscosity for Use in Large-Scale Eddy-Permitting Ocean Models

View More View Less
  • 1 NOAA Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
© Get Permissions
Restricted access

Abstract

This paper discusses a numerical closure, motivated from the ideas of Smagorinsky, for use with a biharmonic operator. The result is a highly scale-selective, state-dependent friction operator for use in eddy-permitting geophysical fluid models. This friction should prove most useful for large-scale ocean models in which there are multiple regimes of geostrophic turbulence. Examples are provided from primitive equation geopotential and isopycnal-coordinate ocean models.

Corresponding author address: Dr. Stephen M. Griffies, NOAA Geophysical Fluid Dynamics Laboratory, P.O. Box 308, Forrestal Campus, Princeton, NJ 08542.

Email: smg@gfdl.gov

Abstract

This paper discusses a numerical closure, motivated from the ideas of Smagorinsky, for use with a biharmonic operator. The result is a highly scale-selective, state-dependent friction operator for use in eddy-permitting geophysical fluid models. This friction should prove most useful for large-scale ocean models in which there are multiple regimes of geostrophic turbulence. Examples are provided from primitive equation geopotential and isopycnal-coordinate ocean models.

Corresponding author address: Dr. Stephen M. Griffies, NOAA Geophysical Fluid Dynamics Laboratory, P.O. Box 308, Forrestal Campus, Princeton, NJ 08542.

Email: smg@gfdl.gov

Save