Data Assimilation in the Presence of Forecast Bias: The GEOS Moisture Analysis

Dick P. Dee Data Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Dick P. Dee in
Current site
Google Scholar
PubMed
Close
and
Ricardo Todling Data Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Ricardo Todling in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The authors describe the application of the unbiased sequential analysis algorithm developed by Dee and da Silva to the Goddard Earth Observing System moisture analysis. The algorithm estimates the slowly varying, systematic component of model error from rawinsonde observations and adjusts the first-guess moisture field accordingly. Results of two seasonal data assimilation cycles show that moisture analysis bias is almost completely eliminated in all observed regions. The improved analyses cause a sizable reduction in the 6-h forecast bias and a marginal improvement in the error standard deviations.

Corresponding author address: Dr. Dick P. Dee, NASA/GSFC, Mail Code 910.3, Greenbelt, MD 20771.

Email: dee@dao.gsfc.nasa.gov

Abstract

The authors describe the application of the unbiased sequential analysis algorithm developed by Dee and da Silva to the Goddard Earth Observing System moisture analysis. The algorithm estimates the slowly varying, systematic component of model error from rawinsonde observations and adjusts the first-guess moisture field accordingly. Results of two seasonal data assimilation cycles show that moisture analysis bias is almost completely eliminated in all observed regions. The improved analyses cause a sizable reduction in the 6-h forecast bias and a marginal improvement in the error standard deviations.

Corresponding author address: Dr. Dick P. Dee, NASA/GSFC, Mail Code 910.3, Greenbelt, MD 20771.

Email: dee@dao.gsfc.nasa.gov

Save
  • Bloom, S. C., L. L. Takacs, A. M. da Silva, and D. Ledvina, 1996: Data assimilation using incremental analysis updates. Mon. Wea. Rev.,124, 1256–1271.

  • Chen, M., R. B. Rood, and W. G. Read, 1998: Upper tropospheric water vapor from GEOS reanalysis and UARS MLS observation. J. Geophys. Res.,103, 19 587–19 594.

  • Cohn, S. E., A. da Silva, J. Guo, M. Sienkiewicz, and D. Lamich, 1998: Assessing the effects of data selection with the DAO physical-space statistical analysis system. Mon. Wea. Rev.,126, 2913–2926.

  • Daley, R., 1992: The effect of serially correlated observation and model error on atmospheric data assimilation. Mon. Wea. Rev.,120, 164–177.

  • Dee, D. P., 1991: Simplification of the Kalman filter for meteorological data assimilation. Quart. J. Roy. Meteor. Soc.,117, 365–384.

  • ——, 1995: On-line estimation of error covariance parameters for atmospheric data assimilation. Mon. Wea. Rev.,123, 1128–1145.

  • ——, and A. M. da Silva, 1998: Data assimilation in the presence of forecast bias. Quart. J. Roy. Meteor. Soc.,124, 269–295.

  • ——, and ——, 1999: Maximum-likelihood estimation of forecast and observation error covariance parameters. Part I: Methodology. Mon. Wea. Rev.,127, 1822–1834.

  • ——, G. Gaspari, C. Redder, L. Rukhovets, and A. M. da Silva, 1999:Maximum-likelihood estimation of forecast and observation error covariance parameters. Part II: Applications. Mon. Wea. Rev.,127, 1835–1849.

  • DelSole, T., and A. Y. Hou, 1999: Empirical correction of a dynamical model. Part I: Fundamental issues. Mon. Wea. Rev.,127, 2533–2545.

  • Friedland, B., 1969: Treatment of bias in recursive filtering. IEEE Trans. Autom. Contr.,AC-14, 359–367.

  • Griffith, A. K., and N. K. Nichols, 1996: Accounting for model error in data assimilation using adjoint methods. Computational Differentiation: Techniques, Applications, and Tools, Proc. Second Int. SIAM Workshop on Computational Differentiation, Santa Fe, NM, Society for Industrial and Applied Mathematics, 195–204.

  • Hou, A. Y., D. Ledvina, A. da Silva, S. Zhang, J. Joiner, R. Atlas, G. Huffman, and C. Kummerow, 2000: Assimilation of SSM/I-derived surface rainfall and total precipitable water for improving the GEOS analysis for climate studies. Mon. Wea. Rev.,128, 509–537.

  • Jazwinski, A. H., 1970: Stochastic Processes and Filtering Theory. Academic Press, 376 pp.

  • Joiner, J., and L. Rokke, 2000: Variational cloud-clearing with TOVS data. Quart. J. Roy. Meteor. Soc.,126, 1–24.

  • Kailath, T., 1968: An innovations approach to least-squares estimation—Part I: Linear filtering in additive white noise. IEEE Trans. Autom. Contr.,AC-13, 646–655.

  • Mitchell, H. L., C. Chouinard, C. Charette, R. Hogue, and S. J. Lambert, 1996: Impact of a revised analysis algorithm on an operational data assimilation system. Mon. Wea. Rev.,124, 1243–1255.

  • Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992: Numerical Recipes in FORTRAN: The Art of Scientific Computing. 2d ed. Cambridge University Press, 963 pp.

  • Saha, S., 1992: Response of the NMC MRF Model to systematic-error correction within integration. Mon. Wea. Rev.,120, 345–360.

  • Suarez, M. J., and L. L. Takacs, 1995: Documentation of the ARIES/GEOS Dynamical Core, Version 2. NASA Tech. Memo. 104606, Vol. 5, 45 pp. [Available from Data Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, MD 20771.].

  • Takacs, L. L., 1996: A simple bias correction algorithm for use in data assimilation. DAO Office Note 96-25, 31 pp. [Available from Data Assimilation Office, Goddard Space Flight Center, Greenbelt, MD 20771.].

  • Thiébaux, H. J., and L. L. Morone, 1990: Short-term systematic errors in global forecasts: Their estimation and removal. Tellus,42A, 209–229.

  • Wentz, F. J., 1997: A well-calibrated ocean algorithm for SSM/I. J. Geophys. Res.,102, 8703–8718.

  • Zipser, E. J., and R. H. Johnson, 1998: Systematic errors in radiosonde humidities: A global problem? Preprints, 10th Symp. Meteorological Observations and Instrumentation, Phoenix, AZ, Amer. Meteor. Soc., 72–76.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 498 301 9
PDF Downloads 259 117 4