Application of the Multigrid Method and a Flexible Hybrid Coordinate in a Nonhydrostatic Model

Shu-hua Chen National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Shu-hua Chen in
Current site
Google Scholar
PubMed
Close
and
Wen-yih Sun Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, Indiana

Search for other papers by Wen-yih Sun in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

A fully compressible, three-dimensional, nonhydrostatic model is developed using a semi-implicit scheme to avoid an extremely small time step. As a result of applying the implicit scheme to high-frequency waves, an elliptic partial differential equation (EPDE) has been introduced. A multigrid solver is applied to solve the EPDEs, which include cross-derivative terms due to terrain-following coordinate transformation.

Several experiments have been performed to evaluate the model as well as the performance of the scheme with respect to tolerance number, relaxation choice, sweeps of prerelaxation and postrelaxation, and a flexible hybrid coordinate (FHC).

An FHC with two functions (base and deviation functions) is introduced. The basic function provides constant vertical grid spacing required in the multigrid solver, while the deviation function helps to adjust the vertical resolution.

Corresponding author address: Dr. Shu-hua Chen, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. Email: shchen@ucar.edu

Abstract

A fully compressible, three-dimensional, nonhydrostatic model is developed using a semi-implicit scheme to avoid an extremely small time step. As a result of applying the implicit scheme to high-frequency waves, an elliptic partial differential equation (EPDE) has been introduced. A multigrid solver is applied to solve the EPDEs, which include cross-derivative terms due to terrain-following coordinate transformation.

Several experiments have been performed to evaluate the model as well as the performance of the scheme with respect to tolerance number, relaxation choice, sweeps of prerelaxation and postrelaxation, and a flexible hybrid coordinate (FHC).

An FHC with two functions (base and deviation functions) is introduced. The basic function provides constant vertical grid spacing required in the multigrid solver, while the deviation function helps to adjust the vertical resolution.

Corresponding author address: Dr. Shu-hua Chen, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. Email: shchen@ucar.edu

Save
  • Adams, J. C., 1989: MUDPACK: Multigrid portable FORTRAN software for the efficient solution of linear elliptic partial differential equations. Appl. Math. Comput, 34 , 113–146.

    • Search Google Scholar
    • Export Citation
  • Adams, J. C., 1991: Recent enhancements in MUDPACK, a multigrid software package for elliptic partial differential equations. Appl. Math. Comput, 43 , 79–93.

    • Search Google Scholar
    • Export Citation
  • Adams, J. C., and P. Smolarkiewicz, 2001: Modified multigrid for 3D elliptic equations with cross-derivatives. Appl. Math. Comput, 121 , 301–312.

    • Search Google Scholar
    • Export Citation
  • Adams, J. C., R. Garcia, B. Gross, J. Hack, D. Haidvogel, and V. Pizzo, 1992:: Applications of multigrid software in the atmospheric sciences. Mon. Wea. Rev, 120 , 1447–1458.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and V. R. Lamb, 1977: Computational design of the basic dynamical processes of the UCLA general circulation model. Methods in Computational Physics, J. Chang Ed., Vol. 17, Academic Press, 173–265.

    • Search Google Scholar
    • Export Citation
  • Bates, J. R., F. H. M. Semazzi, R. W. Higgins, and S. R. M. Barros, 1990: Integration of the shallow water equations on the sphere using a vector semi-Lagrangian scheme with a multigrid solver. Mon. Wea. Rev, 118 , 1615–1627.

    • Search Google Scholar
    • Export Citation
  • Bowman, K. P., and J. Huang, 1991: A multigrid solver for the Helmholtz equation on a semiregular grid on the sphere. Mon. Wea. Rev, 119 , 769–775.

    • Search Google Scholar
    • Export Citation
  • Brandt, A., 1977: Multi-level adaptive solutions to boundary-value problems. Math. Comput, 31 , 333–390.

  • Briggs, W. L., 1987: A Multigrid Tutorial. Society for Industrial and Applied Mathematics, 90 pp.

  • Briggs, W. L., V. E. Henson, and S. F. McCormick, 2000: A Multigrid Tutorial. Society for Industrial and Applied Mathematics, 193 pp.

  • Chen, S. H., 1999: Part I: The development of a nonhydrostatic model. Ph.D. thesis, Purdue University, 83 pp.

  • Ciesielski, P. E., S. R. Fulton, and W. H. Schubert, 1986: Multigrid solution of an elliptic boundary value problem from tropical cyclone theory. Mon. Wea. Rev, 114 , 797–807.

    • Search Google Scholar
    • Export Citation
  • Crowley, W. P., 1968: Numerical advection experiments. Mon. Wea. Rev, 96 , 1–11.

  • Cullen, M. J. P., 1990: A test of a semi-implicit integration technique for a fully compressible non-hydrostatic model. Quart. J. Roy. Meteor. Soc, 116 , 1253–1258.

    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and and Coauthors, 2000: An intercomparison of model-predicted wave breaking for the 11 January 1972 Boulder windstorm. Mon. Wea. Rev, 128 , 901–914.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and J. B. Klemp, 1983: A compressible model for the simulation of moist mountain waves. Mon. Wea. Rev, 111 , 2341–2361.

    • Search Google Scholar
    • Export Citation
  • Engquist, B., and E. Luo, 1997: Convergence of a multigrid method for elliptic equations with highly oscillatory coefficients. SIAM J. Numer. Anal, 34 , 2254–2273.

    • Search Google Scholar
    • Export Citation
  • Fulton, S. R., P. E. Ciesielski, and W. H. Schubert, 1986: Multigrid methods for elliptic problems: A review. Mon. Wea. Rev, 114 , 943–959.

    • Search Google Scholar
    • Export Citation
  • Gadd, A. J., 1978: A split explicit integration scheme for numerical weather prediction. Quart. J. Roy. Meteor. Soc, 104 , 569–582.

    • Search Google Scholar
    • Export Citation
  • Golding, B. W., 1992: An efficient non-hydrostatic forecast model. Meteor. Atmos. Phys, 50 , 89–103.

  • Hiptmair, R., 1998: Multigrid method for Maxwell's equations. SIAM J. Numer. Anal, 36 , 204–225.

  • Hsu, W-R., and W-Y. Sun, 2001: A time-split, forward-backward numerical model for solving a nonhydrostatic and compressible system of equations. Tellus, 53A , 279–299.

    • Search Google Scholar
    • Export Citation
  • Ikawa, M., 1988: Comparison of some schemes for nonhydrostatic models with orography. J. Meteor. Soc. Japan, 66 , 753–776.

  • Juang, H-M. H., 1992: A spectral fully compressible nonhydrostatic mesoscale model in hydrostatic sigma coordinates: Formulation and preliminary results. Meteor. Atmos. Phys, 50 , 75–88.

    • Search Google Scholar
    • Export Citation
  • Juang, H-M. H., 2000: The NCEP mesoscale spectral model: A revised version of the nonhydrostatic regional spectral model. Mon. Wea. Rev, 128 , 2329–2362.

    • Search Google Scholar
    • Export Citation
  • Kapitza, H., and D. P. Eppel, 1992: The non-hydrostatic mesoscale model GESIMA. Part I: Dynamical equations and tests. Beitr. Phys. Atmos, 65 , 129–145.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci, 35 , 1070–1096.

    • Search Google Scholar
    • Export Citation
  • Laprise, R., 1992: The Euler equations of motion with hydrostatic pressure as an independent variable. Mon. Wea. Rev, 120 , 197–207.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1978: A severe downslope windstorm and aircraft turbulence event induced by a mountain wave. J. Atmos. Sci, 35 , 59–77.

    • Search Google Scholar
    • Export Citation
  • Mendez-Nunez, L. R., and J. J. Carroll, 1994: Application of the MacCormack scheme to atmospheric nonhydrostatic models. Mon. Wea. Rev, 122 , 984–1000.

    • Search Google Scholar
    • Export Citation
  • Mertens, R., H. de Gersem, R. Belmans, K. Hameyer, D. Lahaye, S. Vandewalle, and D. Roose, 1998: An algebraic multigrid method for solving very large electromagnetic systems. IEEE Trans. Magn, 34 , 3327–3330.

    • Search Google Scholar
    • Export Citation
  • Miller, P. P., and D. R. Durran, 1991: On the sensitivity of downslope windstorms to the asymmetry of the mountain profile. J. Atmos. Sci, 48 , 1457–1473.

    • Search Google Scholar
    • Export Citation
  • Pinty, J-P., R. Benoit, E. Richard, and R. Laprise, 1995: Simple tests of a semi-implicit semi-Lagrangian model on 2D mountain wave problems. Mon. Wea. Rev, 123 , 3042–3058.

    • Search Google Scholar
    • Export Citation
  • Queney, P., 1948: The problem of airflow over mountains: A summary of theoretical studies. Bull. Amer. Meteor. Soc, 29 , 16–26.

  • Richard, E., P. Mascart, and E. C. Nickerson, 1990: Examples of the role of surface friction in downslope windstorms. Meteor. Atmos. Phys, 43 , 163–172.

    • Search Google Scholar
    • Export Citation
  • Robert, A., 1969: The integration of a spectral model of the atmosphere by the implicit method. Proc. WMO-IUGG Symp. on NWP, Vol. VII, Tokyo, Japan, Japan Meteorological Agency, 19–24.

    • Search Google Scholar
    • Export Citation
  • Robert, A., 1993: Bubble convection experiments with a semi-implicit formulation of the Euler equations. J. Atmos. Sci, 50 , 1865–1873.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and D. M. Burridge, 1981: An energy and angular-momentum conserving vertical finite-difference scheme and hybrid vertical coordinates. Mon. Wea. Rev, 109 , 758–766.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and R. Strüfing, 1981: An energy and angular momentum conserving finite-difference scheme, hybrid coordinates and medium-range weather prediction. ECMWF Tech. Rep. 28, 67 pp.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and C. Temperton, 1996: Stability of a two-time-level semi-implicit integration scheme for gravity-wave motion. ECMWF Tech. Memo. 226, 33 pp.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., P. K. Smolarkiewicz, and J. B. Klemp, 1997: Preconditioned conjugate-residual solvers for Helmholtz equations in nonhydrostatic models. Mon. Wea. Rev, 125 , 587–599.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1985: On severe downslope winds. J. Atmos. Sci, 42 , 2597–2603.

  • Sun, W-Y., 1993: Numerical experiments for advection equation. J. Comput. Phys, 108 , 264–271.

  • Tanguay, M., A. Robert, and R. Laprise, 1990: A semi-implicit semi-Lagrangian fully compressible regional forecast model. Mon. Wea. Rev, 118 , 1970–1980.

    • Search Google Scholar
    • Export Citation
  • Tapp, M. C., and P. W. White, 1976: A non-hydrostatic mesoscale model. Quart. J. Roy. Meteor. Soc, 102 , 277–296.

  • Thomas, S., C. Girard, R. Benoit, M. Desgagne, and P. Pellerin, 1998:: A new adiabatic kernel for the MC2 model. Atmos.–Ocean, 36 , 241–270.

    • Search Google Scholar
    • Export Citation
  • Thomas, S., C. Girard, G. Doms, and U. Schattler, 2000: Semi-implicit scheme for the DWD Lokal-Modell. Meteor. Atmos. Phys, 73 , 105–125.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1052 831 558
PDF Downloads 132 50 3