Evaluation of the NCEP Mesoscale Eta Model Convective Boundary Layer for Air Quality Applications

Wayne M. Angevine CIRES, University of Colorado, and NOAA/Aeronomy Laboratory, Boulder, Colorado

Search for other papers by Wayne M. Angevine in
Current site
Google Scholar
PubMed
Close
and
Kenneth Mitchell NCEP/Environmental Modeling Center, Camp Springs, Maryland

Search for other papers by Kenneth Mitchell in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Atmospheric models are a basic tool for understanding the processes that produce poor air quality, for predicting air quality problems, and for evaluating proposed solutions. At the base of many air quality models is a mesoscale meteorological model. The National Centers for Environmental Prediction (NCEP) is now using a model with spatial resolution better than that used for many previous air quality studies. Mixing depth and wind and temperature profiles in the convective boundary layer are the key parameters that must be predicted correctly by a meteorological model for air quality applications. This paper describes an evaluation of the Eta Model predictions of these parameters based on comparisons to measurements made by boundary layer wind profilers at sites in Illinois and Tennessee. The results indicate that the Eta Model is quite usable as a meteorological driver for air quality modeling under reasonably simple terrain and weather conditions. The model estimates of mixing depth, boundary layer winds, and temperature profiles are reasonably accurate. This performance stems from a combination of recent Eta Model advancements in PBL and surface layer physics, land surface physics, 4D data assimilation, and vertical and horizontal resolution.

Corresponding author address: Dr. Wayne M. Angevine, NOAA/Aeronomy Lab. R/AL3, 325 Broadway, Boulder, CO 80303. Email: wangevine@al.noaa.gov

Abstract

Atmospheric models are a basic tool for understanding the processes that produce poor air quality, for predicting air quality problems, and for evaluating proposed solutions. At the base of many air quality models is a mesoscale meteorological model. The National Centers for Environmental Prediction (NCEP) is now using a model with spatial resolution better than that used for many previous air quality studies. Mixing depth and wind and temperature profiles in the convective boundary layer are the key parameters that must be predicted correctly by a meteorological model for air quality applications. This paper describes an evaluation of the Eta Model predictions of these parameters based on comparisons to measurements made by boundary layer wind profilers at sites in Illinois and Tennessee. The results indicate that the Eta Model is quite usable as a meteorological driver for air quality modeling under reasonably simple terrain and weather conditions. The model estimates of mixing depth, boundary layer winds, and temperature profiles are reasonably accurate. This performance stems from a combination of recent Eta Model advancements in PBL and surface layer physics, land surface physics, 4D data assimilation, and vertical and horizontal resolution.

Corresponding author address: Dr. Wayne M. Angevine, NOAA/Aeronomy Lab. R/AL3, 325 Broadway, Boulder, CO 80303. Email: wangevine@al.noaa.gov

Save
  • Angevine, W. M., and W. L. Ecklund, 1994: Errors in radio acoustic sounding of temperature. J. Atmos. Oceanic Technol, 11 , 837848.

  • Angevine, W. M., and J. I. MacPherson, 1995: Comparison of wind profiler and aircraft wind measurements at Chebogue Point, Nova Scotia. J. Atmos. Oceanic Technol, 12 , 421426.

    • Search Google Scholar
    • Export Citation
  • Angevine, W. M., R. J. Doviak, and Z. Sorbjan, 1994a: Remote sensing of vertical velocity variance and surface heat flux in a convective boundary layer. J. Appl. Meteor, 33 , 977983.

    • Search Google Scholar
    • Export Citation
  • Angevine, W. M., W. L. Ecklund, D. A. Carter, K. S. Gage, and K. P. Moran, 1994b: Improved radioacoustic sounding techniques. J. Atmos. Oceanic Technol, 11 , 4249.

    • Search Google Scholar
    • Export Citation
  • Angevine, W. M., A. B. White, and S. K. Avery, 1994c: Boundary layer depth and entrainment zone characterization with a boundary layer profiler. Bound.-Layer Meteor, 68 , 375385.

    • Search Google Scholar
    • Export Citation
  • Angevine, W. M., P. S. Bakwin, and K. J. Davis, 1998a: Wind profiler and RASS measurements compared with measurements from a 450-m-tall tower. J. Atmos. Oceanic Technol, 15 , 818825.

    • Search Google Scholar
    • Export Citation
  • Angevine, W. M., A. W. Grimsdell, L. M. Hartten, and A. C. Delany, 1998b: The Flatland boundary layer experiments. Bull. Amer. Meteor. Soc, 79 , 419431.

    • Search Google Scholar
    • Export Citation
  • Berbery, E., K. Mitchell, S. Benjamin, T. Smirnova, H. Ritchie, R. Hogue, and E. Radeva, 1999: Assessment of land-surface energy budgets from regional and global models. J. Geophys. Res, 104 , 1932919348.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., F. Chen, K. E. Mitchell, and Z. I. Janjić, 1997: Assessment of the land surface and boundary layer models in two operational versions of the NCEP Eta Model using FIFE data. Mon. Wea. Rev, 125 , 28962915.

    • Search Google Scholar
    • Export Citation
  • Black, T., 1994: The new NMC mesoscale Eta Model: Description and forecast examples. Wea. Forecasting, 9 , 265278.

  • Carter, D. A., K. S. Gage, W. L. Ecklund, W. M. Angevine, P. E. Johnston, A. C. Riddle, J. Wilson, and C. R. Williams, 1995: Development in UHF lower tropospheric wind profiling at NOAA's Aeronomy Laboratory. Radio Sci, 30 , 9771001.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors,. . 1996: Modeling of land surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res, 101 , 72517268.

    • Search Google Scholar
    • Export Citation
  • Chen, F., Z. Janjić, and K. Mitchell, 1997: Impact of atmospheric surface-layer parameterizations in the new land-surface scheme of the NCEP mesoscale Eta model. Bound.-Layer Meteor, 85 , 391421.

    • Search Google Scholar
    • Export Citation
  • Cohn, S. A., and W. M. Angevine, 2000: Boundary layer height and entrainment zone thickness measured by lidars and wind-profiling radars. J. Appl. Meteor, 39 , 12331247.

    • Search Google Scholar
    • Export Citation
  • Ecklund, W. L., D. A. Carter, and B. B. Balsley, 1988: A UHF wind profiler for the boundary layer: Brief description and initial results. J. Atmos. Oceanic Technol, 5 , 432441.

    • Search Google Scholar
    • Export Citation
  • Görsdorf, U., and V. Lehmann, 2000: Enhanced accuracy of RASS-measured temperatures due to an improved range correction. J. Atmos. Oceanic Technol, 17 , 406416.

    • Search Google Scholar
    • Export Citation
  • Grimsdell, A. W., and W. M. Angevine, 1998: Convective boundary layer height measured with wind profilers and compared to cloud base. J. Atmos. Oceanic Technol, 15 , 13321339.

    • Search Google Scholar
    • Export Citation
  • Hinkelman, L., T. Ackerman, and R. Marchand, 1999: An evaluation of NCEP Eta model predictions of surface energy budget and cloud properties by comparison with measured ARM data. J. Geophys. Res, 104 , 1953519550.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev, 122 , 927945.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1996a: The Mellor–Yamada level 2.5 scheme in the NCEP Eta Model. Preprints, 11th Conf. on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., 333–334.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1996b: The surface layer parameterization in the NCEP Eta Model. Preprints, 11th Conf. on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., 354–355.

    • Search Google Scholar
    • Export Citation
  • Marshall, C., K. Crawford, K. Mitchell, D. Stensrud, and F. Carr, 1999: Evaluation of the new land-surface and planetary boundary layer parameterization schemes in the NCEP mesoscale Eta Model using Oklahoma Mesonet observations. Preprints, 14th Conf. on Hydrology, Dallas, TX, Amer. Meteor. Soc., 265–268.

    • Search Google Scholar
    • Export Citation
  • Merritt, D. A., 1995: A statistical averaging method for wind profiler Doppler spectra. J. Atmos. Oceanic Technol, 12 , 985995.

  • Mesinger, F., 1993a: Forecasting upper tropospheric turbulence within the framework of the Mellor-Yamada 2.5 closure. Research Activities in Atmospheric and Oceanic Modeling Rep. 18, WMO, 4.28–4.29.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., 1993b: Sensitivity of the definition of a cold front to the parameterization of turbulents fluxes in the NMC's Eta Model. Research Activities in Atmospheric and Oceanic Modeling Rep. 18, WMO, 4.36–4.38.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and T. Black, 1992: On the impact of forecast accuracy of step-mountain (eta) vs. sigma coordinate. Meteor. Atmos. Phys, 50 , 4760.

    • Search Google Scholar
    • Export Citation
  • Mitchell, K., and Coauthors,. . 2000a: Recent GCIP-sponsored advancements in coupled land surface modeling and data assimilation in the NCEP Eta Mesoscale Model. Preprints, 15th Conf. on Hydrology, Long Beach, CA, Amer. Meteor. Soc., 180–183.

    • Search Google Scholar
    • Export Citation
  • Mitchell, K., and Coauthors,. . 2000b: The collaborative GCIP Land Data Assimilation (LDAS) Project and supportive NCEP uncoupled land surface modeling initiatives. Preprints, 15th Conf. on Hydrology, Long Beach, CA, Amer. Meteor. Soc., 1–4.

    • Search Google Scholar
    • Export Citation
  • Peters, G., and W. M. Angevine, 1996: On the correction of RASS-temperature errors due to turbulence. Contrib. Atmos. Phys, 69 , 8196.

    • Search Google Scholar
    • Export Citation
  • Riddle, A. C., W. M. Angevine, W. L. Ecklund, E. R. Miller, D. B. Parsons, D. A. Carter, and K. S. Gage, 1996: In situ and remotely sensed horizontal winds and temperature intercomparisons obtained using Integrated Sounding Systems during TOGA COARE. Contrib. Atmos. Phys, 69 , 4962.

    • Search Google Scholar
    • Export Citation
  • Rogers, E., T. Black, D. Deaven, G. DiMego, Q. Zhao, M. Baldwin, N. Junker, and Y. Lin, 1996: Changes to the operational “early” Eta Analysis/Forecast System at the National Centers for Environmental Prediction. Wea. Forecasting, 11 , 391413.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., W. L. Ecklund, D. A. Carter, K. S. Gage, and S. A. Ethier, 1993: Research applications of a boundary-layer wind profiler. Bull. Amer. Meteor. Soc, 74 , 567580.

    • Search Google Scholar
    • Export Citation
  • White, A. B., C. W. Fairall, and D. W. Thompson, 1991: Radar observations of humidity variability in and above the marine atmospheric boundary layer. J. Atmos. Oceanic Technol, 8 , 639658.

    • Search Google Scholar
    • Export Citation
  • Yucel, I., W. J. Shuttleworth, and J. Washburne, 1998: Evaluating NCEP Eta Model–derived data against observations. Mon. Wea. Rev, 126 , 19771991.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 536 375 152
PDF Downloads 123 42 4