An Explicit Simulation of Tropical Cyclones with a Triply Nested Movable Mesh Primitive Equation Model: TCM3. Part I: Model Description and Control Experiment

Yuqing Wang International Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii

Search for other papers by Yuqing Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Results from an explicit simulation of tropical cyclones are presented in this study. The numerical model used in the study is the triply nested movable mesh primitive equation model newly developed by the author. It uses the hydrostatic primitive equations with explicit treatment of cloud microphysics. The integration domain is triply nested by a two-way nesting strategy with the two interior meshes being movable following the model tropical cyclone. The model physics are chosen based on the up-to-date developments, including an E-ϵ closure scheme for subgrid-scale vertical turbulent mixing [with E being the turbulent kinetic energy (TKE), and ϵ the TKE dissipation rate]; a modified Monin–Obukhov scheme for the surface flux calculation, with an option to include the effect of sea spray evaporation; an explicit treatment of mixed-ice phase cloud microphysics; and dissipative heating, which has been found to be important in tropical cyclones.

New developments include a new iteration scheme to solve the nonlinear balance equation in σ coordinates in the nested-mesh grids, which is used for model initialization; an initialization scheme for both TKE and its dissipation rate fields based on a level-2 turbulence closure scheme deduced from the TKE and its dissipation rate equations; and a modified formula for the timescale that determines the rate at which cloud ice converts to snow via the Bergeron process.

The success of the multiply nested movable mesh approach and the conservative property of the numerical model is first tested with an experiment in which the model was initialized with an axisymmetric cyclonic vortex embedded in a uniform easterly flow of 5 ms−1 on an f plane, but with no model physics. Results from a control experiment with the full model physics are then discussed in detail to demonstrate the capability of the model in simulating many aspects of the tropical cyclone, especially the inner core structure and both the inner and outer spiral rainbands in the cyclone circulation. The vortex Rossby waves in the simulated tropical cyclone core region are also identified and analyzed. Sensitivity of the model results to various model physics and major physical parameters will be given in a companion paper.

*International Pacific Research Center Contribution Number IPRC-82 and School of Ocean and Earth Science and Technology Contribution Number 5359.

Corresponding author address: Dr. Yuqing Wang, IPRC/SOEST, University of Hawaii at Manoa, 2525 Correa Road, Honolulu, HI 96822. Email: yqwang@soest.hawaii.edu

Abstract

Results from an explicit simulation of tropical cyclones are presented in this study. The numerical model used in the study is the triply nested movable mesh primitive equation model newly developed by the author. It uses the hydrostatic primitive equations with explicit treatment of cloud microphysics. The integration domain is triply nested by a two-way nesting strategy with the two interior meshes being movable following the model tropical cyclone. The model physics are chosen based on the up-to-date developments, including an E-ϵ closure scheme for subgrid-scale vertical turbulent mixing [with E being the turbulent kinetic energy (TKE), and ϵ the TKE dissipation rate]; a modified Monin–Obukhov scheme for the surface flux calculation, with an option to include the effect of sea spray evaporation; an explicit treatment of mixed-ice phase cloud microphysics; and dissipative heating, which has been found to be important in tropical cyclones.

New developments include a new iteration scheme to solve the nonlinear balance equation in σ coordinates in the nested-mesh grids, which is used for model initialization; an initialization scheme for both TKE and its dissipation rate fields based on a level-2 turbulence closure scheme deduced from the TKE and its dissipation rate equations; and a modified formula for the timescale that determines the rate at which cloud ice converts to snow via the Bergeron process.

The success of the multiply nested movable mesh approach and the conservative property of the numerical model is first tested with an experiment in which the model was initialized with an axisymmetric cyclonic vortex embedded in a uniform easterly flow of 5 ms−1 on an f plane, but with no model physics. Results from a control experiment with the full model physics are then discussed in detail to demonstrate the capability of the model in simulating many aspects of the tropical cyclone, especially the inner core structure and both the inner and outer spiral rainbands in the cyclone circulation. The vortex Rossby waves in the simulated tropical cyclone core region are also identified and analyzed. Sensitivity of the model results to various model physics and major physical parameters will be given in a companion paper.

*International Pacific Research Center Contribution Number IPRC-82 and School of Ocean and Earth Science and Technology Contribution Number 5359.

Corresponding author address: Dr. Yuqing Wang, IPRC/SOEST, University of Hawaii at Manoa, 2525 Correa Road, Honolulu, HI 96822. Email: yqwang@soest.hawaii.edu

Save
  • Anthes, R. A., 1972: The development of asymmetries in a three-dimensional numerical model of the tropical cyclone. Mon. Wea. Rev., 100 , 461476.

    • Search Google Scholar
    • Export Citation
  • ——,. 1982: Tropical Cyclones. Their Evolution, Structure and Effects.Meteor. Monogr. No. 41, Amer. Meteor. Soc., 208 pp.

  • Bender, M. A., R. J. Ross, R. E. Tuleya, and Y. Kurihara, 1993: Improvements in tropical cyclone track and intensity forecasts using the GFDL initialization system. Mon. Wea. Rev., 121 , 20462061.

    • Search Google Scholar
    • Export Citation
  • Bigg, E. K., 1953: The supercooling of water. Proc. Phys. Soc. London, B66 , 688694.

  • Bister, M., and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteor. Atmos. Phys., 55 , 233240.

  • Detering, H. W., and D. Etling, 1985: Application of the E-ϵ turbulence model to the atmospheric boundary layer. Bound.-Layer Meteor., 33 , 113133.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., J. Klemp, W. Skamarock, D. Dempsey, Z. Janjic, S. Benjamin, and J. Brown, 1998: A collaborative effort towards a future community mesoscale model (WRF). Preprints, Twelth Conf. on Numerical Weather Prediction, Phoenix, AZ, Amer. Meteor. Soc.,. 242243.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and J. B. Klemp, 1982: On the effects of moisture on the Brunt–Vaisälä frequency. J. Atmos. Sci., 39 , 21522158.

  • Fairall, C. W., J. D. Kepert, and G. J. Holland, 1994: The effect of sea spray on surface energy transports over the ocean. Global Atmos. Ocean System, 2 , 121142.

    • Search Google Scholar
    • Export Citation
  • ——, Bradley, E. F., D. P. Rogers, J. B. Edson, and G. S. Young, 1996: Bulk parameterization of air–sea fluxes for Tropical Ocean-Global Atmosphere Coupled Ocean Atmosphere Response Experiment. J. Geophys. Res., 110 , (C2),. 37473764.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., 1977: The structure and energetics of the tropical cyclone. I: Storm structure. Mon. Wea. Rev., 105 , 11191135.

  • Franklin, C. N., 2000: Dynamics and energetics of tropical cyclone rainbands. Preprints, 24th Conf. on Hurricanes and Tropical Meteorology, Fort Lauderdale, FL, Amer. Meteor. Soc.,. 3334.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., and K. N. Liou, 1993: Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci., 50 , 20082025.

  • Garratt, J. R., 1992: The Atmospheric Boundary Layer. Cambridge University Press, 316 pp.

  • Grell, G. A., J. Dudhia, and D. R. Stauffer, 1994: A description of the fifth generation Penn State/NCAR mesoscale model (MM5). NCAR Tech. Note NCAR/TN-398+STR, 122 pp.

    • Search Google Scholar
    • Export Citation
  • Guinn, T., and W. H. Schubert, 1993: Hurricanes spiral bands. J. Atmos. Sci., 50 , 33803404.

  • Hallett, J., and S. C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249 , 2628.

  • Heymsfield, A. J., and L. J. Donner, 1990: A scheme for parameterizing ice-cloud water content in general circulation models. J. Atmos. Sci., 47 , 18651877.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1997: Maximum potential intensity of tropical cyclones. J. Atmos. Sci., 54 , 25192541.

  • Hsie, E. Y., R. D. Farley, and H. D. Orville, 1980: Numerical simulation of ice phase convective cloud seeding. J. Appl. Meteor., 19 , 950977.

    • Search Google Scholar
    • Export Citation
  • Ikawa, M., and K. Saito, 1991: Description of a nonhydrostatic model developed at the Forecast Research Department of the MRI. Tech. Res. MRI No. 28, Meteorological Research Institute, Japan, 238 pp.

    • Search Google Scholar
    • Export Citation
  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulation. Meteor. Monogr., No. 10, Amer. Meteor. Soc., 84 pp.

    • Search Google Scholar
    • Export Citation
  • Koenig, L. R., 1971: Numerical modeling of ice deposition. J. Atmos. Sci., 28 , 226237.

  • Krueger, S. K., Q. Fu, and K. N. Liou, 1995: Improvements of an ice-phase microphysics parameterization for use in numerical simulations of tropical convection. J. Appl. Meteor., 34 , 281287.

    • Search Google Scholar
    • Export Citation
  • Kuo, H-C., R. T. Williams, and J-H. Chen, 1999: A possible mechanism for the eye rotation of Typhoon Herb. J. Atmos. Sci., 56 , 16591673.

    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., and M. A. Bender, 1980: Use of a movable nested mesh model for tracking a small vortex. Mon. Wea. Rev., 108 , 17921809.

  • ——, and ——,. 1982: Structure and analysis of the eye of a numerically simulated tropical cyclone. J. Meteor. Soc. Japan, 60 , 381395.

    • Search Google Scholar
    • Export Citation
  • ——, ——, and Ross, R. T., 1993: An initialization scheme of hurricane models by vortex specification. Mon. Wea. Rev., 121 , 20302045.

    • Search Google Scholar
    • Export Citation
  • ——, ——, Tuleya, R. E., and R. J. Ross, 1995: Improvements in the GFDL hurricane prediction system. Mon. Wea. Rev., 123 , 27912801.

    • Search Google Scholar
    • Export Citation
  • ——, Tuleya, R. E., and M. A. Bender, 1998: The GFDL hurricane prediction system and its performance in the 1995 hurricane season. Mon. Wea. Rev., 126 , 13061322.

    • Search Google Scholar
    • Export Citation
  • Langland, R. H., and C-S. Liou, 1996: Implementation of an E-ϵ parameterization of vertical subgrid-scale mixing in a regional model. Mon. Wea. Rev., 124 , 905918.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. Pond, 1982: Sensible and latent heat flux measurements over the ocean. J. Phys. Oceanogr., 12 , 464482.

  • Lilly, D. K., 1964: Numerical solutions for the shape-preserving two-dimensional thermal convection element. J. Atmos. Sci., 21 , 8398.

    • Search Google Scholar
    • Export Citation
  • Lin, Y-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22 , 10651092.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., D-L. Zhang, and M. K. Yau, 1997: A multiscale numerical study of Hurricane Andrew (1992). Part I: Explicit simulation and verification. Mon. Wea. Rev., 125 , 30733093.

    • Search Google Scholar
    • Export Citation
  • ——, ——, and ——,. 1999: A multiscale numerical study of Hurricane Andrew (1992). Part II: Kinematics and inner-core structure. Mon. Wea. Rev., 127 , 25972616.

    • Search Google Scholar
    • Export Citation
  • Lord, S. J., H. E. Willoughby, and J. M. Piotrowicz, 1984: Role of a parameterized ice-phase microphysics in an axisymmetric, nonhydrostatic tropical cyclone model. J. Atmos. Sci., 41 , 28362848.

    • Search Google Scholar
    • Export Citation
  • McCumber, M., W-K. Tao, and J. Simpson, 1991: Comparison of ice-phase microphysical parameterization schemes using numerical simulation of tropical convection. J. Appl. Meteor., 30 , 9851004.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., and M. Dudeck, 1992: Parameterization of convective precipitation in mesoscale numerical models: A critical review. Mon. Wea. Rev., 120 , 326344.

    • Search Google Scholar
    • Export Citation
  • Möller, J. D., and M. T. Montgomery, 1999: Vortex Rossby waves and hurricane intensification in a barotropic model. J. Atmos. Sci., 56 , 16741687.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and R. J. Kallenbach, 1997: A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123 , 435465.

    • Search Google Scholar
    • Export Citation
  • ——, and Lu, C., 1997: Free waves on barotropic vortices. Part I: Eigenmode Structure. J. Atmos. Sci., 54 , 18681885.

  • ——, and Enagonio, J., 1998: Tropical cyclogenesis via convectively forced vortex Rossby waves in a three-dimensional quasigeostrophic model. J. Atmos. Sci., 55 , 31763207.

    • Search Google Scholar
    • Export Citation
  • ——, and Franklin, J. L., 1998: An assessment of the balance approximation in hurricanes. J. Atmos. Sci., 55 , 21932200.

  • Ooyama, K. V., 1982: Conceptual evolution of the theory and modeling of the tropical cyclone. J. Meteor. Soc. Japan, 60 , 369379.

  • Orville, H. D., and F. I. Kopp, 1977: Numerical simulation of the life history of a hailstorm. J. Atmos. Sci., 34 , 15961618.

  • Powell, M. D., 1990a: Boundary layer structure and dynamics in outer hurricane rainbands. Part I: Mesoscale rainfall and kinematic structure. Mon. Wea. Rev., 118 , 891917.

    • Search Google Scholar
    • Export Citation
  • ——,. 1990b: Boundary layer structure and dynamics in outer hurricane rainbands. Part II: Downdraft modification and mixed layer recovery. Mon. Wea. Rev., 118 , 919938.

    • Search Google Scholar
    • Export Citation
  • Purser, R. J., and L. M. Leslie, 1988: A semi-implicit, semi-Lagrangian finite-difference scheme using high-order spatial differencing on a nonstaggered grid. Mon. Wea. Rev., 116 , 20692080.

    • Search Google Scholar
    • Export Citation
  • Reisner, J., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124 , 10711107.

    • Search Google Scholar
    • Export Citation
  • Rosenthal, S. L., 1978: Numerical simulation of tropical cyclone development with latent heat release by the resolvable scales. I: Model description and preliminary results. J. Atmos. Sci., 35 , 258271.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and K. A. Emanuel, 1987: An air–sea interaction theory for typical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44 , 542561.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the “seeder-feeder” process in warm-frontal rainbands. J. Atmos. Sci., 40 , 11851206.

    • Search Google Scholar
    • Export Citation
  • ——, and ——,. 1984: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow cloud-frontal rainbands. J. Atmos. Sci., 41 , 29492972.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., M. T. Montgomery, R. K. Taft, T. A. Guinn, S. R. Fulton, J. P. Kossin, and J. P. Edwards, 1999: Polygonal eyewall, asymmetric eye contraction and potential vorticity mixing in hurricanes. J. Atmos. Sci., 56 , 11971223.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and M. T. Montgomery, 1993: A three-dimensional balance theory for rapidly rotating vortices. J. Atmos. Sci., 50 , 33223335.

    • Search Google Scholar
    • Export Citation
  • Smith, G. B., and M. T. Montgomery, 1995: Vortex axisymmetrization: Dependence on azimuthal wavenumber or asymmetric radial structure changes. Quart. J. Roy. Meteor. Soc., 121 , 16151650.

    • Search Google Scholar
    • Export Citation
  • Tripoli, G. J., 1992: An explicit three-dimensional nonhydrostatic numerical simulation of a tropical cyclone. Meteor. Atmos. Sci., 49 , 229254.

    • Search Google Scholar
    • Export Citation
  • Tuleya, R. E., and Y. Kurihara, 1975: The energy and angular momentum budgets of a three-dimensional tropical cyclone model. J. Atmos. Sci., 32 , 287301.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 1995: An inverse balance equation in sigma-coordinates for model initializations. Mon. Wea. Rev., 123 , 482488.

  • ——,. 1998: On the bogusing of tropical cyclones in numerical models: The influence of vertical structure. Meteor. Atmos. Phys., 65 , 153170.

    • Search Google Scholar
    • Export Citation
  • ——,. 1999: A triply-nested movable mesh tropical cyclone model with explicit cloud microphysics. BMRC Research Report 74, Bureau of Meteorology Research Center, 81 pp.

    • Search Google Scholar
    • Export Citation
  • ——, Wang, B., G. J. Holland, and L. Wu, 1997: Ocean response to a moving tropical cyclone in a coupled ocean–tropical cyclone boundary layer model. Preprints, 22d Conf. on Hurricanes and Tropical Meteorology, Fort Collins, CO, Amer. Meteor. Soc.,. 8687.

    • Search Google Scholar
    • Export Citation
  • ——, Kepert, J. D., and G. J. Holland, 1999: The impact of sea spray evaporation on tropical cyclone intensification. Preprints, 23d Conf. on Hurricanes and Tropical Meteorology, Dallas, TX, Amer. Meteor. Soc.,. 2629.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1988: The dynamics of tropical cyclone core. Aust. Meteor. Mag., 36 , 183191.

  • ——,. 1998: Tropical cyclone eye thermodynamics. Mon. Wea. Rev., 126 , 30533067.

  • ——, Jin, H-L., S. J. Lord, and J. M. Piotrowicz, 1984: Hurricane structure and evolution as simulated by an axisymmetric, nonhydrostatic numerical model. J. Atmos. Sci., 41 , 11691186.

    • Search Google Scholar
    • Export Citation
  • Wu, J., 1982: Wind-stress coefficients over sea surface from breeze to hurricane. J. Geophys. Res., 87 , 97049706.

  • Xiao, Q., X. Zou, and B. Wang, 2000: Initialization and simulation of a landfalling hurricane using a variational bogus data assimilation scheme. Mon. Wea. Rev., 128 , 22522269.

    • Search Google Scholar
    • Export Citation
  • Yamasaki, M., 1977: A preliminary experiment of tropical cyclone without parameterizing the effects of cumulus convection. J. Meteor. Soc. Japan, 55 , 1130.

    • Search Google Scholar
    • Export Citation
  • Zhang, D-L., and E. Altshuler, 1999: The effects of dissipative heating on hurricane intensity. Mon. Wea. Rev., 127 , 30323038.

  • ——, Chang, H-R., N. L. Seaman, T. T. Warner, and J. M. Fritsch, 1986: A two-way interactive nesting procedure with variable terrain resolution. Mon. Wea. Rev., 114 , 13301339.

    • Search Google Scholar
    • Export Citation
  • Zou, X., and Q. Xiao, 2000: Studies on the initialization and simulation of a mature hurricane using a variational bogus data assimilation scheme. J. Atmos. Sci., 57 , 836860.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1992 1213 90
PDF Downloads 366 83 8