Applications of the Adjoint Technique to Short-Range Ensemble Forecasting of Mesoscale Convective Systems

Mei Xu Program in Atmospheric and Oceanic Sciences, University of Colorado, and National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Mei Xu in
Current site
Google Scholar
PubMed
Close
,
David J. Stensrud NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by David J. Stensrud in
Current site
Google Scholar
PubMed
Close
,
Jian-Wen Bao Cooperative Institute for Research in Environmental Sciences, University of Colorado, and NOAA/Environmental Technology Laboratory, Boulder, Colorado

Search for other papers by Jian-Wen Bao in
Current site
Google Scholar
PubMed
Close
, and
Thomas T. Warner Program in Atmospheric and Oceanic Sciences, University of Colorado, and National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Thomas T. Warner in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The feasibility of applying a mesoscale adjoint model to the creation of an ensemble for short-range simulations of mesoscale convective systems (MCSs) is explored. Because past studies show that forecasters routinely improve upon numerical guidance and can identify mesoscale-sized areas of forecast concern with a high level of skill, it is clear that forecasters have insights into the daily weather forecast problems that exceed what can be provided by a numerical weather prediction model. Using an adjoint model, one could develop a system in which a forecaster identifies the area of forecast concern and then designs a set of rapidly produced sensitivity experiments that evaluate the influence of key atmospheric parameters on the model forecast. The output from these sensitivity experiments is then used to create ensemble members for a short-range operational ensemble forecast, which is specifically designed to investigate the forecast concern of the day.

This adjoint ensemble approach is tested for the 48-h period beginning 1200 UTC 27 May 1985, in which a long-lived MCS developed underneath a large-scale ridge. A mesoscale adjoint model is used to define the alterations to the model initial conditions necessary to evaluate the influences of key mesoscale structures, which the authors believe have a large influence on later convective development in the model. Results indicate that the adjoint technique is effective in creating the proper directional response in the model simulation.

When compared to initial condition and model physics ensembles of this event, the adjoint ensemble produces more variance than the initial condition ensemble and almost as much variance as the model physics ensemble. However, the values of the equitable threat score and the ranked probability score are better for the adjoint ensemble between 6 and 24 h than for either of the other two ensembles. These results suggest that further exploration of ensembles that incorporate the experience and expertise possessed by forecasters is warranted.

Corresponding author address: Dr. Mei Xu, Research Applications Program, National Center for Atmospheric Research, P. O. Box 3000, Boulder, CO 80307.Email: meixu@ncar.ucar.edu

Abstract

The feasibility of applying a mesoscale adjoint model to the creation of an ensemble for short-range simulations of mesoscale convective systems (MCSs) is explored. Because past studies show that forecasters routinely improve upon numerical guidance and can identify mesoscale-sized areas of forecast concern with a high level of skill, it is clear that forecasters have insights into the daily weather forecast problems that exceed what can be provided by a numerical weather prediction model. Using an adjoint model, one could develop a system in which a forecaster identifies the area of forecast concern and then designs a set of rapidly produced sensitivity experiments that evaluate the influence of key atmospheric parameters on the model forecast. The output from these sensitivity experiments is then used to create ensemble members for a short-range operational ensemble forecast, which is specifically designed to investigate the forecast concern of the day.

This adjoint ensemble approach is tested for the 48-h period beginning 1200 UTC 27 May 1985, in which a long-lived MCS developed underneath a large-scale ridge. A mesoscale adjoint model is used to define the alterations to the model initial conditions necessary to evaluate the influences of key mesoscale structures, which the authors believe have a large influence on later convective development in the model. Results indicate that the adjoint technique is effective in creating the proper directional response in the model simulation.

When compared to initial condition and model physics ensembles of this event, the adjoint ensemble produces more variance than the initial condition ensemble and almost as much variance as the model physics ensemble. However, the values of the equitable threat score and the ranked probability score are better for the adjoint ensemble between 6 and 24 h than for either of the other two ensembles. These results suggest that further exploration of ensembles that incorporate the experience and expertise possessed by forecasters is warranted.

Corresponding author address: Dr. Mei Xu, Research Applications Program, National Center for Atmospheric Research, P. O. Box 3000, Boulder, CO 80307.Email: meixu@ncar.ucar.edu

Save
  • Anderson, J. L., 1997: The impact of dynamical constraints on the selection of initial conditions for ensemble predictions: Low-order perfect model results. Mon. Wea. Rev., 125 , 29692983.

    • Search Google Scholar
    • Export Citation
  • Baer, F., and J. Tribbia, 1977: On complete filtering of gravity modes through non-linear initialization. Mon. Wea. Rev., 105 , 15361539.

    • Search Google Scholar
    • Export Citation
  • Bao, J-W., and R. M. Errico, 1997: An adjoint examination of a nudging method for data assimilation. Mon. Wea. Rev., 125 , 13551373.

  • Barkmeijer, J., 1992: Local error growth in a barotropic model. Tellus, 44A , 314323.

  • ——, van Gijzen, M., and F. Bouttier, 1998: Singular vectors and estimates of the analysis error covariance metric. Quart. J. Roy. Meteor. Soc., 124 , 16951713.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and N. L. Seaman, 1985: A simple scheme for objective analysis in curved flow. Mon. Wea. Rev., 113 , 11841198.

  • Betts, A. K., and M. J. Miller, 1993: The Betts–Miller scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 107–121.

    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1979: High resolution models of the planetary boundary layer. Advances in Environmental Science and Engineering, J. Pfafflin and E. Ziegler, Eds., Vol. 1, Gordon and Breach, 50–85.

    • Search Google Scholar
    • Export Citation
  • Bouttier, F., 1993: The dynamics of error covariances in barotropic model. Tellus, 45A , 408423.

  • Brooks, H. E., and C. A. Doswell III, 1993: New technology and numerical weather prediction—A wasted opportunity? Weather, 48 , 173177.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., 1997: Potential forecast skill of ensemble prediction and spread and skill distributions of the ECMWF ensemble predictions system. Mon. Wea. Rev., 125 , 99119.

    • Search Google Scholar
    • Export Citation
  • ——, and Montani, A., 1999: Targeting observations using sigular vectors. J. Atmos. Sci., 56 , 29652985.

  • ——, Barkmeijer, R. J., R. Gelaro, and J-F. Mahfouf, 1996: Singular vectors, norms and large-scale condensation. Preprints, 11th Conf. on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., 50–51.

    • Search Google Scholar
    • Export Citation
  • ——, Miller, M., and T. N. Palmer, 1999: Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Quart. J. Roy. Meteor. Soc., 125 , 28872908.

    • Search Google Scholar
    • Export Citation
  • Daley, R., 1979: The application of a nonlinear normal mode initialization to an operational forecast model. Atmos.–Ocean, 17 , 98123.

    • Search Google Scholar
    • Export Citation
  • Doswell III, C. A., 1987: The distinction between large-scale and mesoscale contribution to severe convection: A case study. Wea. Forecasting, 2 , 316.

    • Search Google Scholar
    • Export Citation
  • Du, J., S. L. Mullen, and F. Sanders, 1997: Short-range ensemble forecasting of quantitative precipitation. Mon. Wea. Rev., 125 , 24272459.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46 , 30773107.

    • Search Google Scholar
    • Export Citation
  • ——,. 1993: A nonhydrostatic version of the Penn State/NCAR mesoscale model: Validation tests and the simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev., 121 , 14931513.

    • Search Google Scholar
    • Export Citation
  • Ehrendorfer, M., R. M. Rrrico, and K. D. Raeder, 1999: Singular vector perturbation growth in a primitive equation model with moist physics. J. Atmos. Sci., 56 , 16271648.

    • Search Google Scholar
    • Export Citation
  • Einaudi, F., W. L. Clark, D. Fua, J. L. Green, and T. E. VanZandt, 1987: Gravity waves and convection in Colorado during July 1983. J. Atmos. Sci., 44 , 15341553.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., and D. J. Raymond, 1992: Report from a workshop on cumulus parameterization Key Biscayne, Florida, 3–5 May 1991. Bull. Amer. Meteor. Soc., 73 , 318325.

    • Search Google Scholar
    • Export Citation
  • Eom, J. K., 1975: Analysis of the internal gravity wave occurrence of 19 April 1970 in the midwest. Mon. Wea. Rev., 103 , 217226.

  • Errico, R. M., 1997: What is an adjoint model? Bull. Amer. Meteor. Soc., 78 , 25772591.

  • ——,. 2000: Interpretations of the total energy and rotational energy norms applied to determination of singular vectors. Quart. J. Roy. Meteor. Soc., 126 , 15811599.

    • Search Google Scholar
    • Export Citation
  • ——, and Baumhefner, D. P., 1987: Predictibility experiments using a high-resolution limited-area model. Mon. Wea. Rev., 115 , 488504.

    • Search Google Scholar
    • Export Citation
  • ——, and Vukicevic, T., 1992: Sensitivity analysis using an adjoint of the PSU–NCAR mesoscale model. Mon. Wea. Rev., 120 , 16441660.

    • Search Google Scholar
    • Export Citation
  • ——. ——, and Reader, K., 1993: Examination of the accuracy of a tangent linear model. Tellus, 45A , 463477.

  • Fiorino, M., J. S. Goerss, J. J. Jensen, and E. J. Harrison Jr., 1993: An evaluation of the real-time tropical cyclone forecast skill of the navy operational global atmospheric prediction system in the western North Pacific. Wea. Forecasting, 8 , 324.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., and C. F. Chappell, 1981: Preliminary numerical tests of the modification of mesoscale convective systems. J. Appl. Meteor., 20 , 910921.

    • Search Google Scholar
    • Export Citation
  • Funk, T. W., 1991: Forecasting techniques utilized by the Forecast Branch of the National Meteorological Center during a major convective rainfall event. Wea. Forecasting, 6 , 548564.

    • Search Google Scholar
    • Export Citation
  • Gauthier, P., P. Courtier, and P. Moll, 1993: Assimilation of simulated wind lidar data with a Kalman filter. Mon. Wea. Rev., 121 , 18031820.

    • Search Google Scholar
    • Export Citation
  • Gelaro, R., R. H. Langland, G. D. Rohaly, and T. E. Rosmond, 1999: An assessment of the singular-vector approach to targeted observing using the FASTEX dataset. Quart. J. Roy. Meteor. Soc., 125 , 32993327.

    • Search Google Scholar
    • Export Citation
  • Goerss, J. S., and R. A. Jeffries, 1994: Assimilation of synthetic tropical cyclone observations into the Navy Operational Global Atmospheric Prediction System. Wea. Forecasting, 9 , 557576.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., J. Dudhia, and D. R. Stauffer, 1994: A description of the fifth-generation Penn State/NCAR mesoscale model (MM5). NCAR Tech. Note NCAR/TN-398+STR, National Center for Atmospheric Research, Boulder, CO, 122 pp.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 1999: Hypothesis tests for evaluating numerical precipitation forecasts. Wea. Forecasting, 14 , 155167.

  • Heideman, K. F., and J. M. Fritsch, 1988: Forcing mechanisms and other characteristics of significant summertime precipitation. Wea. Forecasting, 3 , 115130.

    • Search Google Scholar
    • Export Citation
  • Hoecker Jr., W. H., . 1963: Three southerly low-level jet streams delineated by the Weather Bureau special pibal network of 1961. Mon. Wea. Rev., 91 , 573582.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and J. Derome, 1995: Methods for ensemble prediction. Mon. Wea. Rev., 123 , 21812196.

  • ——, and Lefaivre, L., 1997: Using ensemble forecasts for model validation. Mon. Wea. Rev., 125 , 24162426.

  • Janjic, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122 , 927945.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc.,. 165170.

    • Search Google Scholar
    • Export Citation
  • Kuo, Y-H., X. Zou, and Z. Guo, 1996: Variational assimilation of precipitable water using a nonhydrostatic mesoscale adjoint model. Part I: Moisture retrieval and sensitivity experiments. Mon. Wea. Rev., 124 , 122147.

    • Search Google Scholar
    • Export Citation
  • ——, ——, and Huang, W., 1997: The impact of global positioning system data on the prediction of an extratropical cyclone: An observing system simulation experiment. J. Dyn. Atmos. Ocean, 27 , 439470.

    • Search Google Scholar
    • Export Citation
  • Langland, R. H., R. L. Elsberry, and R. M. Errico, 1995: Evaluation of physical processes in a idealized extratropical cyclone using adjoint sensitivity. Quart. J. Roy. Meteor. Soc., 121 , 13491386.

    • Search Google Scholar
    • Export Citation
  • ——, Gelaro, R., G. D. Rohaly, and M. A. Shapiro, 1999: Targeted observations in FASTEX: Adjoint-based targeting procedures and data impact experiments in IOP17 and IOP18. Quart. J. Roy. Meteor. Soc., 125 , 32413270.

    • Search Google Scholar
    • Export Citation
  • Leftwich Jr., P. W., J. T. Schaefer, S. J. Weiss, and M. Kay, 1998: Severe convective storm probabilities for local areas in watches issued by the Storm Prediction Center. Preprints, 19th Conf. on Severe Local Storms, Minneapolis, MN, Amer. Meteor. Soc., 548–551.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and K-K. Tung, 1976: Banded convective activity and ducted gravity waves. Mon. Wea. Rev., 104 , 16021617.

  • Lorenz, E. N., 1965: A study of the predictibility of a 28-variable atmospheric model. Tellus, 17 , 321333.

  • McCarthy, D., J. Schaefer, and M. Kay, 1998: Watch verification at the Storm Prediction Center 1970–1997. Preprints, 19th Conf. on Severe Local Storms, Minneapolis, MN, Amer. Meteor. Soc., 603–606.

    • Search Google Scholar
    • Export Citation
  • Meitin Jr., J. G., and J. B. Cunning, 1986: The Oklahoma-Kansas preliminary regional experiment for STORM-Central (OK PRE-STORM) volume I: Daily operations summary. NOAA Tech. Memo. ERL ESG-20, 313 pp.

    • Search Google Scholar
    • Export Citation
  • Molenti, F., R. Buizza, N. Palmer, and T. Petroliagis, 1996: The ECMWF ensemble prediction system: Methodology and validation. Quart. J. Roy. Meteor. Soc., 122 , 73119.

    • Search Google Scholar
    • Export Citation
  • Montani, A., A. J. Thorpe, R. Buizza, and P. Unden, 1999: Forecast skill of the ECMWF model using targeted observations during FASTEX. Quart. J. Roy. Meteor. Soc., 125 , 32193240.

    • Search Google Scholar
    • Export Citation
  • Mostek, A. J., and N. W. Junker, 1989: Quantitative precipitation forecast verification at the National Meteorological Center. Preprints, 12th Conf. on Weather Analysis and Forecasting, Monterey, CA, Amer. Meteor. Soc., 633–639.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., F. Molteni, R. Mureau, R. Buizza, P. Chapelet, and J. Tribbia, 1992: Ensemble prediction. ECMWF Research Department Tech. Memo. 188, 30 pp. [Available from ECMWF, Shinfield Park, Reading, RG2 9AX, United Kingdom.].

    • Search Google Scholar
    • Export Citation
  • ——, Gelaro, R., J. Barkmeijer, and R. Buizza, 1998: Singular vectors, matrices, and adaptive observations. J. Atmos. Sci., 55 , 633653.

    • Search Google Scholar
    • Export Citation
  • Porter, J. M., L. L. Means, J. E. Hovde, and W. B. Chappell, 1955: A synoptic study on the formation of squall lines in the north central United States. Bull. Amer. Meteor. Soc., 36 , 390396.

    • Search Google Scholar
    • Export Citation
  • Powers, J. G., and R. J. Read, 1993: Numerical simulation of the large-amplitude mesoscale gravity-wave event of 15 December 1987 in the central United States. Mon. Wea. Rev., 121 , 22852308.

    • Search Google Scholar
    • Export Citation
  • Preisendorfer, R. W., and T. P. Barnett, 1983: Numerical model-reality intercomparison tests using small-sample statistics. J. Atmos. Sci., 40 , 18841896.

    • Search Google Scholar
    • Export Citation
  • Rabier, F., P. Courtier, and O. Talagrand, 1992: An application of adjoint models to sensitivity analysis. Beitr. Phys. Atmos., 65 , 177192.

    • Search Google Scholar
    • Export Citation
  • ——, Klinker, E., P. Courtier, and A. Hollingsworth, 1996: Sensitivity of forecast errors to initial conditions. Quart. J. Roy. Meteor. Soc., 122 , 121150.

    • Search Google Scholar
    • Export Citation
  • Reynolds, C. A., R. Gelaro, and T. N. Palmer, 2000: Examination of targeting methods in a simplified setting. Tellus, 52A , 391411.

  • Rockwood, A. A., and R. A. Maddox, 1988: Mesoscale and synoptic scale interactions leading to intense convection: The case of 7 June 1982. Wea. Forecasting, 3 , 5168.

    • Search Google Scholar
    • Export Citation
  • Rogers, E., D. G. Deaven, and D. J. DiMego, 1995: The regional analysis system for the operational “early” eta model: Original 80-km configuration and recent changes. Wea. Forecasting, 10 , 810825.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and J. M. Fritsch, 1994: Mesoscale convective systems in weakly forced large-scale environments. Part III: Numerical simulations and implications for operational forecasting. Mon. Wea. Rev., 122 , 20842104.

    • Search Google Scholar
    • Export Citation
  • ——, Manikin, G., E. Rogers, and K. Mitchell, 1999: Importance of cold pools to mesoscale model forecasts. Wea. Forecasting, 14 , 650670.

    • Search Google Scholar
    • Export Citation
  • ——, Bao, J-W., and T. T. Warner, 2000: Using initial condition and model physics perturbations in short-range ensemble simulations of mesoscale convective systems. Mon. Wea. Rev.,. 128 , 20772107.

    • Search Google Scholar
    • Export Citation
  • Stobie, J. G., F. Einaudi, and L. W. Uccellini, 1983: A case study of gravity waves–convective storms interaction: 9 May 1979. J. Atmos. Sci., 40 , 28042830.

    • Search Google Scholar
    • Export Citation
  • Temperton, C., and D. L. Williamson, 1979: Normal mode initialization for a multilevel grid point model. ECMWF Tech. Rep. No. 12, 38 pp. [Available from ECMWF, Shinfield Park, Reading, RG2 9AX, United Kingdom.].

    • Search Google Scholar
    • Export Citation
  • Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 74 , 23172330.

  • ——, and ——,. 1997: Ensemble forecasting at NCEP and the breeding method. Mon. Wea. Rev., 125 , 32973319.

  • Uccellini, L. W., 1975: A case study of apparent gravity wave initiation of severe convective storms. Mon. Wea. Rev., 103 , 497513.

  • Vukicevic, T., 1991: Nonlinear and linear evolution of initial forecast errors. Mon. Wea. Rev., 119 , 16021611.

  • Wang, W., and N. L. Seaman, 1997: A comparison study of convective parameterization schemes in a mesoscale model. Mon. Wea. Rev., 125 , 252278.

    • Search Google Scholar
    • Export Citation
  • Warner, T. T., Y-H. Kuo, J. D. Doyle, J. Dudhia, D. R. Stauffer, and N. L. Seaman, 1992: Nonhydrostatic, mesobeta-scale real-data simulations with the Penn State University/National Center for Atmospheric Research mesoscale model. Meteor. Atmos. Phys., 49 , 209227.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences: An Introductions. Academic Press, 46 pp.

  • Zhang, D-L., and R. A. Anthes, 1982: A high-resolution model of the planetary boundary layer–Sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteor., 21 , 15941609.

    • Search Google Scholar
    • Export Citation
  • ——, and Fritsch, J. M., 1988: Numerical simulation of the meso-β scale structure and evolution of the 1977 Johnstown flood. Part III: Internal gravity waves and the squall line. J. Atmos. Sci., 45 , 12521268.

    • Search Google Scholar
    • Export Citation
  • Zou, X., and Y-H. Kuo, 1996: Rainfall assimilation through an optimal control of initial and boundaryconditions in a limited-area mesoscale mode. Mon. Wea. Rev., 124 , 28592882.

    • Search Google Scholar
    • Export Citation
  • ——, ——, and Guo, Y-R., 1995: Assimilation of atmospheric radio refractivity using a nonhydrostatic adjoint model. Mon. Wea. Rev., 123 , 22292249.

    • Search Google Scholar
    • Export Citation
  • ——, Vandenburghe, F., M. Pondeca, and Y-H. Kuo, 1997: Introduction to adjoint techniques and the MM5 adjoint modeling system. NCAR Tech. Note NCAR/TN-435+STR, National Center for Atmospheric Research, Boulder, CO, 110 pp.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1569 1381 134
PDF Downloads 86 21 4