Simulations of the Transformation Stage of the Extratropical Transition of Tropical Cyclones

Elizabeth A. Ritchie Department of Meteorology, Naval Postgraduate School, Monterey, California

Search for other papers by Elizabeth A. Ritchie in
Current site
Google Scholar
PubMed
Close
and
Russell L. Elsberry Department of Meteorology, Naval Postgraduate School, Monterey, California

Search for other papers by Russell L. Elsberry in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The physical mechanisms associated with the transformation stage of the extratropical transition of a tropical cyclone are simulated with a mesoscale model using initial environmental conditions that approximate the mean circulations defined by Klein et al. The tropical cyclone structural changes simulated by the U.S. Navy Coupled Ocean–Atmosphere Model Prediction System mesoscale model during the three steps of transformation compare well with available observations. During step 1 of transformation when the tropical cyclone is just beginning to interact with the midlatitude baroclinic zone, the main environmental factor that affects the tropical cyclone structure appears to be the decreased sea surface temperature. The movement of the tropical cyclone over the lower sea surface temperatures results in reduced surface heat and moisture fluxes, which weakens the core convection and the intensity decreases. During step 2 of transformation, the low-level temperature gradient and vertical wind shear associated with the baroclinic zone begin to affect the tropical cyclone. Main structural changes include the development of cloud-free regions on the west side of the tropical cyclone, and an enhanced “delta” rain region to the northwest of the tropical cyclone center. Gradual erosion of the clouds and deep convection in the west through south sectors of the tropical cyclone appear to be from mechanically forced subsidence due to the convergence between the midlatitude flow and the tropical cyclone circulation. Whereas the warm core aloft is advected downstream, the mid- to low-level warm core is enhanced by subsidence into the tropical cyclone center, which implies that the low-level cyclonic circulation may continue to be maintained.

Step 3 of transformation is the logical conclusion of structural changes that were occurring during steps 1 and 2. Even though the tropical cyclone circulation aloft has dissipated, a broad cyclonic circulation is maintained below 500 mb. Although the low-level warm core is reduced from step 2, it is still significantly stronger than at step 1, and a second warm anomaly is simulated in a region of strong subsidence upshear of the tropical cyclone remnants. Whereas some precipitation is associated with the remnants of the northern eyewall and some cloudiness to the north-northeast, the southern semicircle is almost completely clear of clouds and precipitation.

Corresponding author address: Dr. Elizabeth A. Ritchie, Dept. of Meteorology, Code MR/Ri, Naval Postgraduate School, 589 Dyer Rd., Room 254, Monterey, CA 93943-5114.Email: ritchie@nps.navy.mil

Abstract

The physical mechanisms associated with the transformation stage of the extratropical transition of a tropical cyclone are simulated with a mesoscale model using initial environmental conditions that approximate the mean circulations defined by Klein et al. The tropical cyclone structural changes simulated by the U.S. Navy Coupled Ocean–Atmosphere Model Prediction System mesoscale model during the three steps of transformation compare well with available observations. During step 1 of transformation when the tropical cyclone is just beginning to interact with the midlatitude baroclinic zone, the main environmental factor that affects the tropical cyclone structure appears to be the decreased sea surface temperature. The movement of the tropical cyclone over the lower sea surface temperatures results in reduced surface heat and moisture fluxes, which weakens the core convection and the intensity decreases. During step 2 of transformation, the low-level temperature gradient and vertical wind shear associated with the baroclinic zone begin to affect the tropical cyclone. Main structural changes include the development of cloud-free regions on the west side of the tropical cyclone, and an enhanced “delta” rain region to the northwest of the tropical cyclone center. Gradual erosion of the clouds and deep convection in the west through south sectors of the tropical cyclone appear to be from mechanically forced subsidence due to the convergence between the midlatitude flow and the tropical cyclone circulation. Whereas the warm core aloft is advected downstream, the mid- to low-level warm core is enhanced by subsidence into the tropical cyclone center, which implies that the low-level cyclonic circulation may continue to be maintained.

Step 3 of transformation is the logical conclusion of structural changes that were occurring during steps 1 and 2. Even though the tropical cyclone circulation aloft has dissipated, a broad cyclonic circulation is maintained below 500 mb. Although the low-level warm core is reduced from step 2, it is still significantly stronger than at step 1, and a second warm anomaly is simulated in a region of strong subsidence upshear of the tropical cyclone remnants. Whereas some precipitation is associated with the remnants of the northern eyewall and some cloudiness to the north-northeast, the southern semicircle is almost completely clear of clouds and precipitation.

Corresponding author address: Dr. Elizabeth A. Ritchie, Dept. of Meteorology, Code MR/Ri, Naval Postgraduate School, 589 Dyer Rd., Room 254, Monterey, CA 93943-5114.Email: ritchie@nps.navy.mil

Save
  • Abraham, J., G. Parkes, and P. Bowyer, 1999: The transition of the Saxby Gale into an extratropical storm. Preprints, 23d Conf. on Hurricanes and Tropical Meteorology, Dallas, TX, American Meteor. Soc., 795–798.

    • Search Google Scholar
    • Export Citation
  • ATCR, 1997: Annual tropical cyclone report. U.S. Naval Oceanography Command Center, 227 pp. [Available from Joint Typhoon Warning Center, COMNAVMARIANAS, PSC 489, Box 12, FPO, AP, 96536-0051.].

    • Search Google Scholar
    • Export Citation
  • Bender, M. A., 1997: The effect of relative flow on the asymmetric structure of the interior of hurricanes. J. Atmos. Sci., 54 , 703724.

    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., and G. M. Lackmann, 1995: Post-landfall tropical cyclone re-intensification in a weakly baroclinic environment: A case study of Hurricane David (September 1979). Mon. Wea. Rev., 123 , 32683291.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., G. Vaughan, and P. Panagi, 1998: Analysis of an extratropical cyclone after its re-intensification as a warm core extratropical cyclone. Quart. J. Roy. Meteor. Soc., 124 , 23292356.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18 , 495527.

  • DiMego, M., and L. F. Bosart, 1982: The transformation of tropical storm Agnes into an extratropical cyclone. Part I: The observed fields and vertical motion computations. Mon. Wea. Rev., 110 , 385411.

    • Search Google Scholar
    • Export Citation
  • Foley, G. R., and B. N. Hanstrum, 1994: The capture of tropical cyclones by cold fronts off the west coast of Australia. Wea. Forecasting, 9 , 577592.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and E. A. Ritchie, 1999: Effects of environmental flow upon tropical cyclone structure. Mon. Wea. Rev., 127 , 20442061.

  • Harr, P. A., and R. L. Elsberry, 2000: Extratropical transition of tropical cyclones over the western North Pacific. Part I: Evolution of structural characteristics during the transition process. Mon. Wea. Rev., 128 , 26132633.

    • Search Google Scholar
    • Export Citation
  • Harshvardhan, R. Davies, D. Randall, and T. Corsetti, 1987: A fast radiation parameterization for atmospheric circulation models. J. Geophys. Res., 92 , 10091015.

    • Search Google Scholar
    • Export Citation
  • Hodur, R. M., 1997: The Naval Research Laboratory's Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS). Mon. Wea. Rev., 125 , 14141430.

    • Search Google Scholar
    • Export Citation
  • Kain, J., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain-Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

    • Search Google Scholar
    • Export Citation
  • Klein, P. M., P. A. Harr, and R. L. Elsberry, 2000: Extratropical transition of western North Pacific tropical cyclones: An overview and conceptual model of the transformation stage. Wea. Forecasting, 15 , 373395.

    • Search Google Scholar
    • Export Citation
  • Louis, J. F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17 , 187202.

  • Matuno, H., and M. Sekioka, 1971: Some aspects of the extratropical transformation of a tropical cyclone. J. Meteor. Soc. Japan, 49 , 736743.

    • Search Google Scholar
    • Export Citation
  • McBride, J. L., and R. M. Zehr, 1981: Observational analysis of tropical cyclone formation. Part II: Comparison of non-developing versus developing systems. J. Atmos. Sci., 38 , 11321151.

    • Search Google Scholar
    • Export Citation
  • Perkey, D. J., and C. W. Krietzberg, 1976: A time-dependent lateral boundary scheme for limited-area primitive equation models. Mon. Wea. Rev., 104 , 744755.

    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., and R. L. Elsberry, 1999: Mechanisms contributing to extratropical transition of tropical cyclones in the western North Pacific: An idealized study. Preprints, 23d Conf. on Hurricanes and Tropical Meteorology, Dallas, TX, Amer. Meteor. Soc., 811–814.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and microscale structure of organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the “seeder-feeder” process in warm-frontal rainbands. J. Atmos. Sci., 40 , 11851206.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., and C. A. Doswell III, 1999: Conceptual models of upper-level frontogenesis in southwesterly and northwesterly flow. Quart. J. Roy. Met. Soc.,. 125 , 25352562.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., 1983: Asymmetric boundary layer flow under a translating hurricane. J. Atmos. Sci., 40 , 19841998.

  • Shimazu, Y., 1998: Classification of precipitation systems in mature and early weakening stages of typhoons around Japan. J. Meteor. Soc. Japan, 76 , 437445.

    • Search Google Scholar
    • Export Citation
  • Sinclair, M. R., 1993: Synoptic-scale diagnosis of the extratropical transition of a southwest Pacific tropical cyclone. Mon. Wea. Rev., 121 , 941960.

    • Search Google Scholar
    • Export Citation
  • Titley, D., and R. L. Elsberry, 2000: Large intensity changes in tropical cyclones: A case study of Supertyphoon Flo during TCM-90. Mon. Wea. Rev., 128 , 35563573.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1150 744 16
PDF Downloads 335 94 1