• Andreassen, O., , I. Lie, , and C. E. Wasberg, 1994: The spectral viscosity method applied to simulation of waves in a stratified atmosphere. J. Comput. Phys, 110 , 257273.

    • Search Google Scholar
    • Export Citation
  • Bourke, W., , B. McAvaney, , K. Puri, , and R. Thurling, 1977: Global modeling of atmospheric flow by spectral methods. Methods Comput. Phys, 17 , 267324.

    • Search Google Scholar
    • Export Citation
  • Canuto, C., , M. Y. Hussaini, , A. Quarteroni, , and T. A. Zang, 1987: Spectral Methods in Fluid Dynamics. Springer-Verlag, 600 pp.

  • Chen, G-Q., , Q. Du, , and E. Tadmor, 1993: Spectral viscosity approximations to multidimensional scalar conservation laws. Math. Comput, 61 , 629643.

    • Search Google Scholar
    • Export Citation
  • Eliasen, E., , B. Machenbauer, , and E. Rasmussen, 1970: On a numerical method for integration of the hydrodynamical equations with a spectral representation of the horizontal fields. Institut for Teoretisk Meteorologi Rep. 2, University of Copenhagen, 35 pp.

    • Search Google Scholar
    • Export Citation
  • Gelb, A., , and E. Tadmor, 2000: Enhanced spectral viscosity approximations for conservation laws. Appl. Numer. Math, 33 , 321.

  • Gottelmann, J., 1999: A spline collocation scheme for the spherical shallow water equations. J. Comput. Phys, 148 , 291298.

  • Gottlieb, D., , and C-W. Shu, 1998: On the Gibbs phenomenon and its resolution. SIAM Rev, 39 , 644668.

  • Hack, J. J., 1992: Climate system simulation. Climate System Modeling, K. E. Trenberth, Ed., Cambridge University Press, 283–318.

  • Hack, J. J., , and R. Jakob, 1992: Description of a shallow water model based on the spectral transform method. NCAR Tech. Note NCAR/TN-342+STR, 39 pp. [NTIS PB92-155258.].

    • Search Google Scholar
    • Export Citation
  • Jakob, R., , J. J. Hack, , and D. L. Williamson, 1993: Solutions to the shallow water test set using the spectral transform method. NCAR Tech. Note NCAR/TN-388+STR, 82 pp. [NTIS PB93-202729.].

    • Search Google Scholar
    • Export Citation
  • Jakob-Chien, R., , J. J. Hack, , and D. L. Williamson, 1995: Spectral transform solutions to the shallow water test set. J. Comput. Phys, 119 , 164187.

    • Search Google Scholar
    • Export Citation
  • Karamanos, G-S., , and G. E. Karniadakis, 1999: A spectral vanishing viscosity method for large eddy simulations. J. Comput. Phys, 163 , 2250.

    • Search Google Scholar
    • Export Citation
  • Leith, C. E., 1971: Atmospheric predictability and two-dimensional turbulence. J. Atmos. Sci, 28 , 145161.

  • Lesieur, M., , and O. Metais, 1996: New trends in large-eddy simulations of turbulence. Annu. Rev. Fluid. Mech, 28 , 4582.

  • Ma, H-P., 1998: Chebyshev–Legendre super spectral viscosity method for nonlinear conservation laws. SIAM J. Numer. Anal, 35 , 893908.

    • Search Google Scholar
    • Export Citation
  • Maday, Y., , and E. Tadmor, 1989: Analysis of the spectral vanishing viscosity method for periodic conservation laws. SIAM J. Numer. Anal, 26 , 854870.

    • Search Google Scholar
    • Export Citation
  • Maday, Y., , S. M. Ould Kaber, , and E. Tadmor, 1993: Legendre pseudospectral viscosity method for nonlinear conservation laws. SIAM J. Numer. Anal, 30 , 321342.

    • Search Google Scholar
    • Export Citation
  • Orszag, S. A., 1970: Transform method for calculation of vector coupled sums: Application to the spectral form of the vorticity equation. J. Atmos. Sci, 27 , 890895.

    • Search Google Scholar
    • Export Citation
  • Orszag, S. A., 1974: Fourier series on spheres. Mon. Wea. Rev, 102 , 5675.

  • Robert, A. J., 1966: The integration of a low-order spectral form of the primitive meteorological equations. J. Meteor. Soc. Japan, 44 , 237244.

    • Search Google Scholar
    • Export Citation
  • Spotz, W. F., , M. A. Taylor, , and P. N. Swarztrauber, 1998: Fast shallow-water solvers in latitude–longitude coordinates. J. Comput. Phys, 145 , 432444.

    • Search Google Scholar
    • Export Citation
  • Swarztrauber, P. N., 1996: Spectral transform methods for solving the shallow-water equations on the sphere. Mon. Wea. Rev, 124 , 730744.

    • Search Google Scholar
    • Export Citation
  • Tadmor, E., 1989: Convergence of spectral methods for nonlinear conservation laws. SIAM J. Numer. Anal, 26 , 3044.

  • Tadmor, E., 1993: Super viscosity and spectral approximations of nonlinear conservation laws. Numerical Methods for Fluid Dynamics IV, M. J. Baines and K. W. Morton, Eds., Clarendon Press, 69–82.

    • Search Google Scholar
    • Export Citation
  • Taylor, M., , J. Tribbia, , and M. Iskandarani, 1997: The spectral element method for the shallow water equations on the sphere. J. Comput. Phys, 130 , 92108.

    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., , J. B. Drake, , J. J. Hack, , R. Jakob, , and P. N. Swarztrauber, 1992: A standard test set for numerical approximations to the shallow water equations in spherical geometry. J. Comput. Phys, 102 , 211224.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 41 41 11
PDF Downloads 26 26 4

Spectral Viscosity for Shallow Water Equations in Spherical Geometry

View More View Less
  • 1 Department of Mathematics, Arizona State University, Tempe, Arizona
© Get Permissions
Restricted access

Abstract

A spherical spectral viscosity operator is proposed as an alternative to standard horizontal diffusion terms in global atmospheric models. Implementation in NCAR's Spectral Transform Shallow Water Model and application to a suite of standard test cases demonstrates improvement in resolution and numerical conservation of invariants at no extra computational cost. The retention in the spectral viscosity solution of high-wavenumber information allows the successful application of high-resolution postprocessing methods.

Corresponding author address: James Gleeson, Applied Mathematics, University College Cork, Cork, Ireland. Email: gleeson@math.la.asu.edu

Abstract

A spherical spectral viscosity operator is proposed as an alternative to standard horizontal diffusion terms in global atmospheric models. Implementation in NCAR's Spectral Transform Shallow Water Model and application to a suite of standard test cases demonstrates improvement in resolution and numerical conservation of invariants at no extra computational cost. The retention in the spectral viscosity solution of high-wavenumber information allows the successful application of high-resolution postprocessing methods.

Corresponding author address: James Gleeson, Applied Mathematics, University College Cork, Cork, Ireland. Email: gleeson@math.la.asu.edu

Save