• Andreassen, O., I. Lie, and C. E. Wasberg, 1994: The spectral viscosity method applied to simulation of waves in a stratified atmosphere. J. Comput. Phys, 110 , 257273.

    • Search Google Scholar
    • Export Citation
  • Bourke, W., B. McAvaney, K. Puri, and R. Thurling, 1977: Global modeling of atmospheric flow by spectral methods. Methods Comput. Phys, 17 , 267324.

    • Search Google Scholar
    • Export Citation
  • Canuto, C., M. Y. Hussaini, A. Quarteroni, and T. A. Zang, 1987: Spectral Methods in Fluid Dynamics. Springer-Verlag, 600 pp.

  • Chen, G-Q., Q. Du, and E. Tadmor, 1993: Spectral viscosity approximations to multidimensional scalar conservation laws. Math. Comput, 61 , 629643.

    • Search Google Scholar
    • Export Citation
  • Eliasen, E., B. Machenbauer, and E. Rasmussen, 1970: On a numerical method for integration of the hydrodynamical equations with a spectral representation of the horizontal fields. Institut for Teoretisk Meteorologi Rep. 2, University of Copenhagen, 35 pp.

    • Search Google Scholar
    • Export Citation
  • Gelb, A., and E. Tadmor, 2000: Enhanced spectral viscosity approximations for conservation laws. Appl. Numer. Math, 33 , 321.

  • Gottelmann, J., 1999: A spline collocation scheme for the spherical shallow water equations. J. Comput. Phys, 148 , 291298.

  • Gottlieb, D., and C-W. Shu, 1998: On the Gibbs phenomenon and its resolution. SIAM Rev, 39 , 644668.

  • Hack, J. J., 1992: Climate system simulation. Climate System Modeling, K. E. Trenberth, Ed., Cambridge University Press, 283–318.

  • Hack, J. J., and R. Jakob, 1992: Description of a shallow water model based on the spectral transform method. NCAR Tech. Note NCAR/TN-342+STR, 39 pp. [NTIS PB92-155258.].

    • Search Google Scholar
    • Export Citation
  • Jakob, R., J. J. Hack, and D. L. Williamson, 1993: Solutions to the shallow water test set using the spectral transform method. NCAR Tech. Note NCAR/TN-388+STR, 82 pp. [NTIS PB93-202729.].

    • Search Google Scholar
    • Export Citation
  • Jakob-Chien, R., J. J. Hack, and D. L. Williamson, 1995: Spectral transform solutions to the shallow water test set. J. Comput. Phys, 119 , 164187.

    • Search Google Scholar
    • Export Citation
  • Karamanos, G-S., and G. E. Karniadakis, 1999: A spectral vanishing viscosity method for large eddy simulations. J. Comput. Phys, 163 , 2250.

    • Search Google Scholar
    • Export Citation
  • Leith, C. E., 1971: Atmospheric predictability and two-dimensional turbulence. J. Atmos. Sci, 28 , 145161.

  • Lesieur, M., and O. Metais, 1996: New trends in large-eddy simulations of turbulence. Annu. Rev. Fluid. Mech, 28 , 4582.

  • Ma, H-P., 1998: Chebyshev–Legendre super spectral viscosity method for nonlinear conservation laws. SIAM J. Numer. Anal, 35 , 893908.

    • Search Google Scholar
    • Export Citation
  • Maday, Y., and E. Tadmor, 1989: Analysis of the spectral vanishing viscosity method for periodic conservation laws. SIAM J. Numer. Anal, 26 , 854870.

    • Search Google Scholar
    • Export Citation
  • Maday, Y., S. M. Ould Kaber, and E. Tadmor, 1993: Legendre pseudospectral viscosity method for nonlinear conservation laws. SIAM J. Numer. Anal, 30 , 321342.

    • Search Google Scholar
    • Export Citation
  • Orszag, S. A., 1970: Transform method for calculation of vector coupled sums: Application to the spectral form of the vorticity equation. J. Atmos. Sci, 27 , 890895.

    • Search Google Scholar
    • Export Citation
  • Orszag, S. A., 1974: Fourier series on spheres. Mon. Wea. Rev, 102 , 5675.

  • Robert, A. J., 1966: The integration of a low-order spectral form of the primitive meteorological equations. J. Meteor. Soc. Japan, 44 , 237244.

    • Search Google Scholar
    • Export Citation
  • Spotz, W. F., M. A. Taylor, and P. N. Swarztrauber, 1998: Fast shallow-water solvers in latitude–longitude coordinates. J. Comput. Phys, 145 , 432444.

    • Search Google Scholar
    • Export Citation
  • Swarztrauber, P. N., 1996: Spectral transform methods for solving the shallow-water equations on the sphere. Mon. Wea. Rev, 124 , 730744.

    • Search Google Scholar
    • Export Citation
  • Tadmor, E., 1989: Convergence of spectral methods for nonlinear conservation laws. SIAM J. Numer. Anal, 26 , 3044.

  • Tadmor, E., 1993: Super viscosity and spectral approximations of nonlinear conservation laws. Numerical Methods for Fluid Dynamics IV, M. J. Baines and K. W. Morton, Eds., Clarendon Press, 69–82.

    • Search Google Scholar
    • Export Citation
  • Taylor, M., J. Tribbia, and M. Iskandarani, 1997: The spectral element method for the shallow water equations on the sphere. J. Comput. Phys, 130 , 92108.

    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., J. B. Drake, J. J. Hack, R. Jakob, and P. N. Swarztrauber, 1992: A standard test set for numerical approximations to the shallow water equations in spherical geometry. J. Comput. Phys, 102 , 211224.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 235 83 18
PDF Downloads 151 60 3

Spectral Viscosity for Shallow Water Equations in Spherical Geometry

Anne GelbDepartment of Mathematics, Arizona State University, Tempe, Arizona

Search for other papers by Anne Gelb in
Current site
Google Scholar
PubMed
Close
and
James P. GleesonDepartment of Mathematics, Arizona State University, Tempe, Arizona

Search for other papers by James P. Gleeson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A spherical spectral viscosity operator is proposed as an alternative to standard horizontal diffusion terms in global atmospheric models. Implementation in NCAR's Spectral Transform Shallow Water Model and application to a suite of standard test cases demonstrates improvement in resolution and numerical conservation of invariants at no extra computational cost. The retention in the spectral viscosity solution of high-wavenumber information allows the successful application of high-resolution postprocessing methods.

Corresponding author address: James Gleeson, Applied Mathematics, University College Cork, Cork, Ireland. Email: gleeson@math.la.asu.edu

Abstract

A spherical spectral viscosity operator is proposed as an alternative to standard horizontal diffusion terms in global atmospheric models. Implementation in NCAR's Spectral Transform Shallow Water Model and application to a suite of standard test cases demonstrates improvement in resolution and numerical conservation of invariants at no extra computational cost. The retention in the spectral viscosity solution of high-wavenumber information allows the successful application of high-resolution postprocessing methods.

Corresponding author address: James Gleeson, Applied Mathematics, University College Cork, Cork, Ireland. Email: gleeson@math.la.asu.edu

Save