A Comparison of Cumulus Parameterizations in Idealized Sea-Breeze Simulations

Charles Cohen Institute for Global Change Research and Education, Huntsville, Alabama

Search for other papers by Charles Cohen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Four cumulus parameterizations in the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (Penn State–NCAR) Mesoscale Model (MM5) are compared in idealized sea-breeze simulations, with the aim of discovering why they work as they do. Compared to simulations of real cases, idealized cases produce simpler results, which can be more easily examined and explained. By determining which features of each parameterization cause them to produce differing results, a basis for improving their formulations and assisting modelers who may design new cumulus parameterizations can be provided.

The most realistic results obtained for these simulations are those using the Kain–Fritsch scheme. Rainfall is significantly delayed with the Betts–Miller scheme, due to the method of computing the reference sounding. Another version of this parameterization, which computes the reference sounding differently, produces nearly the same timing and location of deep convection as the Kain–Fritsch scheme, despite the very different physics.

In applying the quasi-equilibrium closure, the Grell parameterization uses horizontal and vertical advection to compute the rate of destabilization. In the present simulation, the parameterized updraft is always derived from the top of the mixed layer, where vertical advection predominates over horizontal advection in increasing the moist static energy, instead of from the most unstable layer. By doing this, it evades the question of whether horizontal advection generates instability or merely advects an existing unstable column.

Corresponding author address: Charles Cohen, Universities Space Research Association, 320 Sparkman Dr., Huntsville, AL 35805. Email: charlie.cohen@msfc.nasa.gov

Abstract

Four cumulus parameterizations in the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (Penn State–NCAR) Mesoscale Model (MM5) are compared in idealized sea-breeze simulations, with the aim of discovering why they work as they do. Compared to simulations of real cases, idealized cases produce simpler results, which can be more easily examined and explained. By determining which features of each parameterization cause them to produce differing results, a basis for improving their formulations and assisting modelers who may design new cumulus parameterizations can be provided.

The most realistic results obtained for these simulations are those using the Kain–Fritsch scheme. Rainfall is significantly delayed with the Betts–Miller scheme, due to the method of computing the reference sounding. Another version of this parameterization, which computes the reference sounding differently, produces nearly the same timing and location of deep convection as the Kain–Fritsch scheme, despite the very different physics.

In applying the quasi-equilibrium closure, the Grell parameterization uses horizontal and vertical advection to compute the rate of destabilization. In the present simulation, the parameterized updraft is always derived from the top of the mixed layer, where vertical advection predominates over horizontal advection in increasing the moist static energy, instead of from the most unstable layer. By doing this, it evades the question of whether horizontal advection generates instability or merely advects an existing unstable column.

Corresponding author address: Charles Cohen, Universities Space Research Association, 320 Sparkman Dr., Huntsville, AL 35805. Email: charlie.cohen@msfc.nasa.gov

Save
  • Anthes, R. A., 1977: A cumulus parameterization scheme utilizing a one-dimensional cloud model. Mon. Wea. Rev., 105 , 270286.

  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31 , 674701.

    • Search Google Scholar
    • Export Citation
  • Arya, S. P. S., 1977: Suggested revisions to certain boundary layer parameterization schemes used in atmospheric circulation models. Mon. Wea. Rev., 105 , 215227.

    • Search Google Scholar
    • Export Citation
  • Barnes, S. L., and C. W. Newton, 1986: Thunderstorms in the synoptic setting. Thunderstorm Morphology and Dynamics, 2d ed., E. Kessler, Ed., University of Oklahoma Press, 75–112.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1982: Saturation point analysis of moist convective overturning. J. Atmos. Sci., 39 , 14841505.

  • Betts, A. K., . 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112 , 677691.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and M. J. Miller, 1993: The Betts–Miller scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 107–121.

    • Search Google Scholar
    • Export Citation
  • Black, T. L., 1994: The new NMC mesoscale Eta model: Description and forecast examples. Wea. Forecasting, 9 , 265278.

  • Brown, R. G., and C. Zhang, 1997: Variability of midtropospheric moisture and its effects on cloud-top height distribution during TOGA COARE. J. Atmos. Sci., 54 , 27602774.

    • Search Google Scholar
    • Export Citation
  • Burpee, R. W., and L. N. Lahiff, 1984: Area-average rainfall variations on sea-breeze days in south Florida. Mon. Wea. Rev., 112 , 520534.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., and R. A. Anthes, 1989: Storm and Cloud Dynamics. Academic Press, 883 pp.

  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46 , 30773107.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., . 1993: A nonhydrostatic version of the Penn State–NCAR mesoscale model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev., 121 , 14931513.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., and D. J. Raymond, 1993: The Representation of Cumulus Convection in Numerical Models. Meteor. Monogr., No. 46, Amer. Meteor. Soc., 246 pp.

    • Search Google Scholar
    • Export Citation
  • Ferretti, R., T. Paolucci, W. Zheng, and G. Visconti, 2000: Analyses of the precipitation pattern on the Alpine region using different cumulus convection parameterizations. J. Appl. Meteor., 39 , 182200.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., 1983: The cumulus parameterization problem. Mon. Wea. Rev., 111 , 18591871.

  • Fritsch, J. M., and C. F. Chappell, 1980: Numerical prediction of convectively driven mesoscale pressure systems. Part I: Convective parameterization. J. Atmos. Sci., 37 , 17221733.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev., 121 , 764787.

  • Janjić, Z. I., 1994: The step-mountain Eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122 , 927945.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47 , 27842802.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., . 1992: The role of the convective “trigger function” in numerical forecasts of mesoscale convective systems. Meteor. Atmos. Phys., 49 , 93106.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., . 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

    • Search Google Scholar
    • Export Citation
  • Kotroni, V., and K. Lagouvardos, 2001: Precipitation forecast skill of different convective parameterization and microphysical schemes: application for the cold season over Greece. Geophys. Res. Lett., 28 , 19771980.

    • Search Google Scholar
    • Export Citation
  • Kuo, Y-H., and R. A. Anthes, 1984: Semiprognostic tests of Kuo-type cumulus parameterizations schemes in an extratropical convective system. Mon. Wea. Rev., 112 , 14981509.

    • Search Google Scholar
    • Export Citation
  • Kuo, Y-H., R. J. Reed, and Y. Liu, 1996: The ERICA IOP 5 storm. Part III: Mesoscale cyclogenesis and precipitation parameterization. Mon. Wea. Rev., 124 , 14091434.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 1993: Gregarious tropical convection. J. Atmos. Sci., 50 , 20262037.

  • McBride, J. L., and W. M. Frank, 1999: Relationships between stability and monsoon convection. J. Atmos. Sci., 56 , 2436.

  • Molinari, J., and M. Dudek, 1992: Parameterization of convective precipitation in mesoscale numerical models: A critical review. Mon. Wea. Rev., 120 , 326344.

    • Search Google Scholar
    • Export Citation
  • Nagarajan, B., M. K. Yau, and D-L. Zhang, 2001: A numerical study of a mesoscale convective system during TOGA COARE. Part I: Model description and verification. Mon. Wea. Rev., 129 , 25012520.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and K. E. Emanuel, 1993: The Kuo cumulus parameterization. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 145–147.

    • Search Google Scholar
    • Export Citation
  • Redelsperger, J-L., and Coauthors. 2000: A GCSS model intercomparison for a tropical squall line observed during TOGA-COARE. I: Cloud-resolving models. Quart. J. Roy. Meteor. Soc., 126 , 823863.

    • Search Google Scholar
    • Export Citation
  • Rogers, E., T. L. Black, D. G. Deaven, G. J. DiMego, Q. Zhao, M. Baldwin, N. W. Junker, and Y. Lin, 1996: Changes to the operational “early” Eta analysis/forecast system at the National Centers for Environmental Prediction. Wea. Forecasting, 11 , 391416.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., and J. J. Hack, 1982: Inertial stability and tropical cyclone development. J. Atmos. Sci., 39 , 16871697.

  • Smith, R. K., 2000: The role of cumulus convection in hurricanes and its representation in hurricane models. Rev. Geophys., 38 , 465489.

    • Search Google Scholar
    • Export Citation
  • Wang, J., and D. A. Randall, 1994: The moist available energy of a conditionally unstable atmosphere. Part II: Further analysis of GATE data. J. Atmos. Sci., 51 , 703710.

    • Search Google Scholar
    • Export Citation
  • Wang, W., and N. L. Seaman, 1997: A comparison study of convective parameterization schemes in a mesoscale model. Mon. Wea. Rev., 125 , 252278.

    • Search Google Scholar
    • Export Citation
  • Zhang, D-L., and R. A. Anthes, 1982: A high-resolution model of the planetary boundary layer—Sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteor., 21 , 15941609.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1300 1191 432
PDF Downloads 86 20 1