The 8 June 1995 McLean, Texas, Storm. Part I: Observations of Cyclic Tornadogenesis

David C. Dowell NOAA/National Severe Storms Laboratory and Cooperative Institute for Mesoscale Meteorological Studies, Norman, Oklahoma

Search for other papers by David C. Dowell in
Current site
Google Scholar
PubMed
Close
and
Howard B. Bluestein School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Howard B. Bluestein in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

On 8 June 1995 scientists participating in the Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX) collected airborne Doppler radar data in a storm that produced a family of tornadoes near McLean, Texas. The Electra Doppler Radar (ELDORA) scanned three significant tornadoes during their formative and mature stages; one of the tornadoes was of F4/F5 intensity.

Evidence from pseudo-dual-Doppler analyses of the ELDORA data reveals a process of cyclic tornado formation qualitatively similar to that depicted in previous conceptual models. In particular, the rear-flank gust front appears to play a major role in determining the location of the next vortex in the series. When a tornado forms, a small region (3–5 km wide) of outflow surges ahead of the tornado, producing a local bulge in the gust front. A new vorticity maximum may form near the leading edge of the outflow. In contrast to what is suggested by earlier conceptual models, intersection of the rear-flank gust front with a wind shift along the forward flank does not appear to be a necessary element in the formation of the new vortex.

Previous studies have shown that if low-level outflow from the rear flank of a storm surges well ahead of the midlevel updraft, initiation of new deep, moist convection downshear along the gust front may be necessary for storm survival. In contrast, in the McLean storm, the rear gust front did not move ahead of the location of the midlevel updraft. The persistence of the main updraft may have fostered a rapid cyclic process.

The first and second tornadoes each, in short time, became separated from the main updraft. In contrast, the third large tornado in the family (the fourth overall) remained with the main updraft and persisted for over 1 h. Reasons for the transition of the cyclic phase into the long-lived phase will be discussed in Part II of this paper.

Current affiliation: National Center for Atmospheric Research, Boulder, Colorado

Corresponding author address: David C. Dowell, National Center for Atmospheric Research, P. O. Box 3000, Boulder, CO 80307-3000. Email: ddowell@ucar.edu

Abstract

On 8 June 1995 scientists participating in the Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX) collected airborne Doppler radar data in a storm that produced a family of tornadoes near McLean, Texas. The Electra Doppler Radar (ELDORA) scanned three significant tornadoes during their formative and mature stages; one of the tornadoes was of F4/F5 intensity.

Evidence from pseudo-dual-Doppler analyses of the ELDORA data reveals a process of cyclic tornado formation qualitatively similar to that depicted in previous conceptual models. In particular, the rear-flank gust front appears to play a major role in determining the location of the next vortex in the series. When a tornado forms, a small region (3–5 km wide) of outflow surges ahead of the tornado, producing a local bulge in the gust front. A new vorticity maximum may form near the leading edge of the outflow. In contrast to what is suggested by earlier conceptual models, intersection of the rear-flank gust front with a wind shift along the forward flank does not appear to be a necessary element in the formation of the new vortex.

Previous studies have shown that if low-level outflow from the rear flank of a storm surges well ahead of the midlevel updraft, initiation of new deep, moist convection downshear along the gust front may be necessary for storm survival. In contrast, in the McLean storm, the rear gust front did not move ahead of the location of the midlevel updraft. The persistence of the main updraft may have fostered a rapid cyclic process.

The first and second tornadoes each, in short time, became separated from the main updraft. In contrast, the third large tornado in the family (the fourth overall) remained with the main updraft and persisted for over 1 h. Reasons for the transition of the cyclic phase into the long-lived phase will be discussed in Part II of this paper.

Current affiliation: National Center for Atmospheric Research, Boulder, Colorado

Corresponding author address: David C. Dowell, National Center for Atmospheric Research, P. O. Box 3000, Boulder, CO 80307-3000. Email: ddowell@ucar.edu

Save
  • Adlerman, E. J., and K. K. Droegemeier, 2000: A numerical simulation of cyclic tornadogenesis. Preprints, 20th Conf. on Severe Local Storms, Orlando, FL, Amer. Meteor. Soc., 591–594.

    • Search Google Scholar
    • Export Citation
  • Adlerman, E. J., and R. Davies-Jones, 1999: A numerical simulation of cyclic mesocyclogenesis. J. Atmos. Sci., 56 , 20452069.

  • Agee, E. M., J. T. Snow, and P. R. Clare, 1976: Multiple vortex features in the tornado cyclone and the occurrence of tornado families. Mon. Wea. Rev., 104 , 552563.

    • Search Google Scholar
    • Export Citation
  • Armijo, L., 1969: A theory for the determination of wind and precipitation velocities with Doppler radars. J. Atmos. Sci., 26 , 570573.

    • Search Google Scholar
    • Export Citation
  • Battan, L. J., 1980: Observations of two Colorado thunderstorms by means of a zenith-pointing Doppler radar. J. Appl. Meteor., 19 , 580592.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., E. W. McCaul Jr.,, G. P. Byrd, and G. R. Woodall, 1988: Mobile sounding observations of a tornadic storm near the dryline: The Canadian, Texas storm of 7 May 1986. Mon. Wea. Rev., 116 , 17901804.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., 1977: Flow in severe thunderstorms observed by dual-Doppler radar. Mon. Wea. Rev., 105 , 113120.

  • Browning, K. A., 1964: Airflow and precipitation trajectories within severe local storms which travel to the right of the winds. J. Atmos. Sci., 21 , 634639.

    • Search Google Scholar
    • Export Citation
  • Burgess, D. W., L. R. Lemon, and R. A. Brown, 1975: Tornado characteristics revealed by Doppler radar. Geophys. Res. Lett., 2 , 183184.

    • Search Google Scholar
    • Export Citation
  • Burgess, D. W., V. T. Wood, and R. A. Brown, 1982: Mesocyclone evolution statistics. Preprints, 12th Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 422–424.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., M. J. Carpenter, and C. D. Burghart, 1985: Doppler radar sampling limitations in convective storms. J. Atmos. Oceanic Technol., 2 , 357361.

    • Search Google Scholar
    • Export Citation
  • Cressman, G. P., 1959: An operational objective analysis system. Mon. Wea. Rev., 87 , 367374.

  • Darkow, G. L., 1971: Periodic tornado production by long-lived parent thunderstorms. Preprints, Seventh Conf. on Severe Local Storms, Kansas City, MO, Amer. Meteor. Soc., 214–217.

    • Search Google Scholar
    • Export Citation
  • Darkow, G. L., and J. C. Roos, 1970: Multiple tornado producing thunderstorms and their apparent cyclic variations in intensity. Preprints, 14th Conf. on Radar Meteorology, Tucson, AZ, Amer. Meteor. Soc., 305–308.

    • Search Google Scholar
    • Export Citation
  • Davies, J. M., C. A. Doswell III,, D. W. Burgess, and J. F. Weaver, 1994: Some noteworthy aspects of the Hesston, Kansas, tornado family of 13 March 1990. Bull. Amer. Meteor. Soc., 75 , 10071017.

    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., P. S. Ray, R. G. Strauch, and L. J. Miller, 1976: Error estimation in wind fields derived from dual-Doppler radar measurement. J. Appl. Meteor., 15 , 868878.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and H. B. Bluestein, 1997: The Arcadia, Oklahoma, storm of 17 May 1981: Analysis of a supercell during tornadogenesis. Mon. Wea. Rev., 125 , 25622582.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., . 1999: Dual-Doppler analysis of non-simultaneous observations. Preprints, 29th Conf. on Radar Meteorology, Montreal, QC, Canada, Amer. Meteor. Soc., 529–532.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., . 2002: The 8 June 1995 McLean, Texas, storm. Part II: Cyclic tornado formation, maintenance, and dissipation. Mon. Wea. Rev., 130 , 26492670.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and D. P. Jorgensen, 1997: Airborne Doppler radar analysis of supercells during COPS-91. Mon. Wea. Rev., 125 , 365383.

  • Dowell, D. C., J. Wurman, and L. J. Wicker, 2001: Centrifuging of scatterers in tornadoes. Preprints, 30th Conf. on Radar Meteorology, Munich, Germany, Amer. Meteor. Soc., 307–309.

    • Search Google Scholar
    • Export Citation
  • Ellis, S., 1997: Hole-filling data voids in meteorological fields. M.S. thesis, School of Meteorology, University of Oklahoma, 198 pp. [Available from School of Meteorology, 100 East Boyd, Norman, OK 73019.].

    • Search Google Scholar
    • Export Citation
  • Foote, G. B., and P. S. duToit, 1969: Terminal velocity of raindrops aloft. J. Appl. Meteor., 8 , 249253.

  • Forbes, G. S., 1981: On the reliability of hook echoes as tornado indicators. Mon. Wea. Rev., 109 , 14571466.

  • Fujita, T. T., 1974: Jumbo tornado outbreak of 3 April 1974. Weatherwise, 27 (3) 116126.

  • Fujita, T. T., . 1981: Tornadoes and downbursts in the context of generalized planetary scales. J. Atmos. Sci., 38 , 15111534.

  • Fujita, T. T., D. L. Bradbury, and C. F. van Thullenar, 1970: Palm Sunday tornadoes of April 11, 1965. Mon. Wea. Rev., 98 , 2969.

  • Gal-Chen, T., 1982: Errors in fixed and moving frame of references: Applications for conventional and Doppler radar analysis. J. Atmos. Sci., 39 , 22792300.

    • Search Google Scholar
    • Export Citation
  • Gamache, J. F., 1997: Evaluation of a fully three-dimensional variational Doppler analysis technique. Preprints, 28th Conf. on Radar Meteorology, Austin, TX, Amer. Meteor. Soc., 422–423.

    • Search Google Scholar
    • Export Citation
  • Gao, J., M. Xue, A. Shapiro, and K. K. Droegemeier, 1999: A variational method for the analysis of three-dimensional wind fields from two Doppler radars. Mon. Wea. Rev., 127 , 21282142.

    • Search Google Scholar
    • Export Citation
  • Glickman, T. S., Ed.,. 2000: Glossary of Meteorology. 2d ed. Amer. Meteor. Soc., 855 pp.

  • Hildebrand, P. H., and C. K. Mueller, 1985: Evaluation of meteorological airborne Doppler radar. Part I: Dual-Doppler analyses of air motions. J. Atmos. Oceanic Technol., 2 , 362380.

    • Search Google Scholar
    • Export Citation
  • Hildebrand, P. H., C. A. Walther, C. L. Frush, J. Testud, and F. Baudin, 1994: The ELDORA/ASTRAIA airborne Doppler weather radar: Goals, design, and first field tests. Proc. IEEE, 82 , 18731890.

    • Search Google Scholar
    • Export Citation
  • Jensen, B., E. N. Rasmussen, T. P. Marshall, and M. A. Mabey, 1983: Storm scale structure of the Pampa storm. Preprints, 13th Conf. on Severe Local Storms, Tulsa, OK, Amer. Meteor. Soc., 85–88.

    • Search Google Scholar
    • Export Citation
  • Johnson, K. W., P. S. Ray, B. C. Johnson, and R. P. Davies-Jones, 1987: Observations related to the rotational dynamics of the 20 May 1977 tornadic storms. Mon. Wea. Rev., 115 , 24632478.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., P. H. Hildebrand, and C. L. Frush, 1983: Feasibility test of an airborne pulse-Doppler meteorological radar. J. Climate Appl. Meteor., 22 , 744757.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., T. Matejka, and J. D. DuGranrut, 1996: Multi-beam techniques for deriving wind fields from airborne Doppler radars. Meteor. Atmos. Physics, 59 , 83104.

    • Search Google Scholar
    • Export Citation
  • Joss, J., and A. Waldvogel, 1970: Raindrop size distribution and Doppler velocities. Preprints, 14th Conf. on Radar Meteorology, Tucson, AZ, Amer. Meteor. Soc., 153–156.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., 1987: Dynamics of tornadic thunderstorms. Annu. Rev. Fluid Mech., 19 , 369402.

  • Lee, W-C., P. Dodge, F. D. Marks Jr.,, and P. H. Hildebrand, 1994: Mapping of airborne Doppler radar data. J. Atmos. Oceanic Technol., 11 , 572578.

    • Search Google Scholar
    • Export Citation
  • Lemon, L. R., 1976: The flanking line, a severe thunderstorm intensification source. J. Atmos. Sci., 33 , 686694.

  • Lemon, L. R., and C. A. Doswell, 1979: Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis. Mon. Wea. Rev., 107 , 11841197.

    • Search Google Scholar
    • Export Citation
  • Lewellen, W. S., 1993: Tornado vortex theory. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., No. 79, Amer. Geophys. Union, 19–39.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., E. N. Rasmussen, J. M. Straka, and D. C. Dowell, 1998: Observations of low-level baroclinity generated by anvil shadows. Mon. Wea. Rev., 126 , 29422958.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., . 2000: Surface thermodynamic characteristics of RFDs as measured by a mobile mesonet. Preprints, 20th Conf. on Severe Local Storms, Orlando, FL, Amer. Meteor. Soc., 251–254.

    • Search Google Scholar
    • Export Citation
  • Marwitz, J. D., 1972: The structure and motion of severe hailstorms. Part III: Severely sheared storms. J. Appl. Meteor., 11 , 189201.

    • Search Google Scholar
    • Export Citation
  • Marwitz, J. D., and D. W. Burgess, 1994: The observed inflow structure of a thunderstorm with a mesocyclone. Mon. Wea. Rev., 122 , 393396.

    • Search Google Scholar
    • Export Citation
  • Matejka, T., 2002: Estimating the most steady frame of reference from Doppler radar data. J. Atmos. Oceanic Technol., 19 , 10351048.

  • NCDC, 1995: Storm Data,. Vol. 37, No. 6, 178–179.

  • Nelson, S. P., and R. R. Braham Jr.,, 1975: Detailed observational study of a weak echo region. Pure Appl. Geophys., 113 , 735746.

  • Nettleton, L., S. Daud, R. Neitzel, C. Burghart, W. C. Lee, and P. Hildebrand, 1993: SOLO: A program to peruse and edit radar data. Preprints, 26th Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. Soc., 338–339.

    • Search Google Scholar
    • Export Citation
  • Oye, R., C. Mueller, and S. Smith, 1995: Software for radar translation, visualization, editing, and interpolation. Preprints, 27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 359–361.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., R. E. Peterson, J. E. Minor, and B. D. Campbell, 1982: Evolutionary characteristics and photogrammetric determination of windspeeds within the Tulia outbreak tornadoes 28 May 1980. Preprints, 12th Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 301–304.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., J. M. Straka, R. Davies-Jones, C. A. Doswell, F. H. Carr, M. D. Eilts, and D. R. MacGorman, 1994: Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX. Bull. Amer. Meteor. Soc., 75 , 9951006.

    • Search Google Scholar
    • Export Citation
  • Ray, P. S., and M. Stephenson, 1990: Assessment of the geometric and temporal errors associated with airborne Doppler radar measurements of a convective storm. J. Atmos. Oceanic Technol., 7 , 206217.

    • Search Google Scholar
    • Export Citation
  • Ray, P. S., C. L. Ziegler, W. Bumgarner, and R. J. Serafin, 1980: Single- and multiple-Doppler radar observations of tornadic storms. Mon. Wea. Rev., 108 , 16071625.

    • Search Google Scholar
    • Export Citation
  • Ray, P. S., D. P. Jorgensen, and S. L. Wang, 1985: Airborne Doppler radar observations of a convective storm. J. Climate Appl. Meteor., 24 , 687698.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and J. Klemp, 1985: On the rotation and propagation of simulated supercell thunderstorms. J. Atmos. Sci., 42 , 271292.

  • Shapiro, A., and J. J. Mewes, 1999: New formulations of dual-Doppler wind analysis. J. Atmos. Oceanic Technol., 16 , 782792.

  • Sirmans, D., D. Zrnic, and B. Baumgarner, 1976: Extensions of maximum unambiguous Doppler velocity by use of two sampling rates. Preprints, 17th Conf. on Radar Meteorology, Seattle, WA, Amer. Meteor. Soc., 23–28.

    • Search Google Scholar
    • Export Citation
  • Speheger, D. A., C. A. Doswell III,, and G. J. Stumpf, 2002: The tornadoes of 3 May 1999: Event verification in central Oklahoma and related issues. Wea. Forecasting, 17 , 362381.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., E. N. Rasmussen, and S. E. Fredrickson, 1996: A mobile mesonet for finescale meteorological observations. J. Atmos. Oceanic Technol., 13 , 921936.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., and C. A. Doswell III,, 2000: Radar data objective analysis. J. Atmos. Oceanic Technol., 17 , 105120.

  • Wakimoto, R. M., W-C. Lee, H. B. Bluestein, C-H. Liu, and P. H. Hildebrand, 1996: ELDORA observations during VORTEX 95. Bull. Amer. Meteor. Soc., 77 , 14651481.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., C. Liu, and H. Cai, 1998: The Garden City, Kansas, storm during VORTEX 95. Part I: Overview of the storm's life cycle and mesocyclogenesis. Mon. Wea. Rev., 126 , 372392.

    • Search Google Scholar
    • Export Citation
  • Weaver, J. F., and S. P. Nelson, 1982: Multiscale aspects of thunderstorm gust fronts and their effects on subsequent storm development. Mon. Wea. Rev., 110 , 707718.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110 , 504520.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., . 1984: The structure and classification of numerically simulated convective storms in directionally varying wind shears. Mon. Wea. Rev., 112 , 24792498.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., M. S. Gilmore, and L. J. Wicker, 1998: The impact of convective storms on their local environment: What is an appropriate ambient sounding? Preprints, 19th Conf. on Severe Local Storms, Minneapolis, MN, Amer. Meteor. Soc., 238–241.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., 1996: The role of near surface wind shear on low-level mesocyclone generation and tornadoes. Preprints, 18th Conf. on Severe Local Storms, San Francisco, CA, Amer. Meteor. Soc., 115–119.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., J. M. Straka, and E. N. Rasmussen, 1996: Fine-scale Doppler radar observations of tornadoes. Science, 272 , 17741777.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1264 416 57
PDF Downloads 907 294 25