The Sensitivity of Numerically Simulated Cyclic Mesocyclogenesis to Variations in Model Physical and Computational Parameters

Edwin J. Adlerman School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Edwin J. Adlerman in
Current site
Google Scholar
PubMed
Close
and
Kelvin K. Droegemeier School of Meteorology and Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma

Search for other papers by Kelvin K. Droegemeier in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In a previous paper, a three-dimensional numerical model was used to study the evolution of successive mesocyclones produced by a single supercell storm, that is, cyclic mesocyclogenesis. Not all supercells, simulated or observed, exhibit this behavior, and few previous papers in the literature mention it. As a first step toward identifying and understanding the conditions needed to produce cyclic redevelopments within supercell updrafts, this paper examines the effect on cyclic mesocyclogenesis of variations in model physical and computational parameters. Specified changes in grid spacing, numerical diffusion, microphysics options, and the coefficient of surface friction are found to alter, in some cases dramatically, the number and duration of simulated mesocyclone cycles.

For example, a decrease from 2.0 to 0.5 km in horizontal grid spacing transforms a nearly perfectly steady, noncycling supercell into one that exhibits three distinct mesocyclone cycles during the same time period. Decreasing the minimum vertical grid spacing at the ground tends to speed up the cycling process, while increasing it has the opposite effect. Ice microphysics is shown to cut short the initial cycling, while both simple surface friction and increased numerical diffusion tend to slow it down. Combining competing effects (i.e., ice microphysics with friction) tends to bring the simulation back to the evolution found in the control case. Explanations for these results are offered in the context of nonlinear feedbacks associated with the cycling process. In addition, the implications of these findings in our understanding of storm behavior as well as in the context of storm-scale numerical weather prediction are discussed.

Corresponding author address: Edwin Adlerman, School of Meteorology, University of Oklahoma, 100 E. Boyd, Rm. 1310, Norman, OK 73019-0628. Email: eadlerman@ou.edu

Abstract

In a previous paper, a three-dimensional numerical model was used to study the evolution of successive mesocyclones produced by a single supercell storm, that is, cyclic mesocyclogenesis. Not all supercells, simulated or observed, exhibit this behavior, and few previous papers in the literature mention it. As a first step toward identifying and understanding the conditions needed to produce cyclic redevelopments within supercell updrafts, this paper examines the effect on cyclic mesocyclogenesis of variations in model physical and computational parameters. Specified changes in grid spacing, numerical diffusion, microphysics options, and the coefficient of surface friction are found to alter, in some cases dramatically, the number and duration of simulated mesocyclone cycles.

For example, a decrease from 2.0 to 0.5 km in horizontal grid spacing transforms a nearly perfectly steady, noncycling supercell into one that exhibits three distinct mesocyclone cycles during the same time period. Decreasing the minimum vertical grid spacing at the ground tends to speed up the cycling process, while increasing it has the opposite effect. Ice microphysics is shown to cut short the initial cycling, while both simple surface friction and increased numerical diffusion tend to slow it down. Combining competing effects (i.e., ice microphysics with friction) tends to bring the simulation back to the evolution found in the control case. Explanations for these results are offered in the context of nonlinear feedbacks associated with the cycling process. In addition, the implications of these findings in our understanding of storm behavior as well as in the context of storm-scale numerical weather prediction are discussed.

Corresponding author address: Edwin Adlerman, School of Meteorology, University of Oklahoma, 100 E. Boyd, Rm. 1310, Norman, OK 73019-0628. Email: eadlerman@ou.edu

Save
  • Adlerman, E. J., and K. K. Droegemeier, 2000: A numerical simulation of cyclic tornadogenesis. Preprints, 20th Conf. on Severe Local Storms, Orlando, FL, Amer. Meteor. Soc., 591–594.

    • Search Google Scholar
    • Export Citation
  • Adlerman, E. J., and R. P. Davies-Jones, 1999: A numerical simulation of cyclic mesocyclogenesis. J. Atmos. Sci., 56 , 20452069.

  • Atkins, N. T., M. L. Weisman, and L. J. Wicker, 1999: The influence of preexisting boundaries on supercell evolution. Mon. Wea. Rev., 127 , 29102927.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., 1992: Operational implications of the sensitivity of modeled thunderstorm to thermal perturbations. Preprints, Fourth Workshop on Operational Meteorology, Whistler, BC, Canada, Atmospheric Environment Service and Canadian Meteorological and Oceanographic Society, 398–407.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., and R. B. Wilhelmson, 1993: Hodograph curvature and updraft intensity in numerically modeled supercells. J. Atmos. Sci., 50 , 18241833.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., L. J. Wicker, and C. A. Doswell III,, 1993: STORMTIPE: A forecasting experiment using a three-dimensional cloud model. Wea. Forecasting, 8 , 352362.

    • Search Google Scholar
    • Export Citation
  • Burgess, D. W., V. T. Wood, and R. A. Brown, 1982: Mesocyclone evolution statistics. Preprints, 12th Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 422–424.

    • Search Google Scholar
    • Export Citation
  • Carpenter Jr.,, R. L., K. K. Droegemeier, G. M. Bassett, W. L. Qualley, and R. Strasser, 1997: Project Hub-CAPS: Storm-scale NWP for commercial aviation. Preprints, Seventh Conf. on Aviation, Range, and Aerospace Meteorology, Long Beach, CA, Amer. Meteor. Soc., 474–479.

    • Search Google Scholar
    • Export Citation
  • Carpenter Jr.,, R. L., and Coauthors. 1998: Storm-scale NWP for commercial aviation: Results from real-time operational tests in 1996–1997. Preprints, 12th Conf. on Numerical Weather Prediction, Phoenix, AZ, Amer. Meteor. Soc., 213–216.

    • Search Google Scholar
    • Export Citation
  • Carpenter Jr.,, R. L., K. K. Droegemeier, G. M. Bassett, S. S. Weygandt, D. E. Jahn, S. Stevenson, W. Qualley, and R. Strasser, 1999: Storm-scale numerical weather prediction for commercial and military aviation. Part 1: Results from operational tests in 1998. Preprints, Eighth Conf. on Aviation, Range, and Aerospace Meteorology, Dallas, TX, Amer. Meteor. Soc., 209–211.

    • Search Google Scholar
    • Export Citation
  • Cohen, C., 2000: A quantitative investigation of entrainment and detrainment in numerically simulated cumulonimbus clouds. J. Atmos. Sci., 57 , 16571674.

    • Search Google Scholar
    • Export Citation
  • Crook, N. A., and J. Sun, 2001: Assimilation and forecasting experiments on supercell storms. Part II: Experiments with WSR-88D data. Preprints, 14th Conf. on Numerical Weather Prediction, Fort Lauderdale, FL, Amer. Meteor. Soc., 147–150.

    • Search Google Scholar
    • Export Citation
  • Darkow, G. L., and J. C. Roos, 1970: Multiple tornado producing thunderstorms and their apparent cyclic variations in intensity. Preprints, 14th Conf. on Radar Meteorology, Tucson, AZ, Amer. Meteor. Soc., 305–308.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., R. J. Trapp, and H. B. Bluestein, 2001: Tornadoes and tornadic storms. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 167–221.

    • Search Google Scholar
    • Export Citation
  • Doswell III,, C. A., and D. W. Burgess, 1993: Tornadoes and tornadic storms: A review of conceptual models. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys., Monogr., No. 79, Amer. Geophys. Union, 161–172.

    • Search Google Scholar
    • Export Citation
  • Doswell III,, C. A., and E. N. Rasmussen, 1994: The effect of neglecting the virtual temperature correction on CAPE calculations. Wea. Forecasting, 9 , 619623.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and H. B. Bluestein, 2002a: The 8 June 1995 McLean, Texas, storm. Part I: Observations of cyclic tornadogenesis. Mon. Wea. Rev., 130 , 26262648.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., . 2002b: The 8 June 1995 McLean, Texas, storm. Part II: Cyclic tornado formation, maintenance, and dissipation. Mon. Wea. Rev., 130 , 26492670.

    • Search Google Scholar
    • Export Citation
  • Droegemeier, K. K., 1985: The numerical simulation of thunderstorm outflow dynamics. Ph.D. thesis, University of Illinois, 695 pp. [Available from K. K. Droegemeier, School of Meteorology, 100 E. Boyd, Rm. 1310, Norman, OK 73019-0628.].

    • Search Google Scholar
    • Export Citation
  • Droegemeier, K. K., . 1997: The numerical prediction of thunderstorms: Challenges, potential benefits, and results from realtime operational tests. WMO Bull., 46 , 324336.

    • Search Google Scholar
    • Export Citation
  • Droegemeier, K. K., and R. B. Wilhelmson, 1987: Numerical simulation of thunderstorm outflow dynamics. Part I: Outflow sensitivity experiments and turbulence dynamics. J. Atmos. Sci., 44 , 11801210.

    • Search Google Scholar
    • Export Citation
  • Droegemeier, K. K., and J. Levit, 1993: The sensitivity of numerically-simulated storm evolution to initial conditions. Preprints, 17th Conf. on Severe Local Storms, St. Louis, MO, Amer. Meteor. Soc., 431–435.

    • Search Google Scholar
    • Export Citation
  • Droegemeier, K. K., G. Bassett, and M. Xue, 1994: Very high-resolution, uniform-grid simulation of deep convection on a massively parallel computer: Implications for small-scale predictability. Preprints, 10th Conf. on Numerical Weather Prediction, Portland, OR, Amer. Meteor. Soc., 376–379.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., J. Klemp, W. Skamarock, D. Dempsey, Z. Janjic, S. Benjamin, and J. Brown, 1998: A collaborative community effort towards a future community mesoscale model (WRF). Preprints, 12th Conf. on Numerical Weather Prediction Phoenix, AZ, Amer. Meteor. Soc., 242–243.

    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., 1996: Horizontal scale selection of convective cells in numerically simulated squall lines. Preprints, Seventh Conf. on Mesoscale Processes, Reading, United Kingdom, Amer. Meteor. Soc., 471–472.

    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1994: The Atmospheric Boundary Layer. Cambridge Atmospheric and Space Science Series, Vol. XX, Cambridge University Press, 316 pp.

    • Search Google Scholar
    • Export Citation
  • Grasso, L. D., and W. R. Cotton, 1995: Numerical simulation of a tornado vortex. J. Atmos. Sci., 52 , 11921203.

  • Hou, D., E. Kalnay, and K. K. Droegemeier, 2001: Objective verification of the SAMEX '98 ensemble forecasts. Mon. Wea. Rev., 129 , 7391.

    • Search Google Scholar
    • Export Citation
  • Janish, P. R., K. K. Droegemeier, M. Xue, K. Brewster, and J. Levit, 1995: Evaluation of the Advanced Regional Prediction System (ARPS) for storm-scale modeling applications in operational forecasting. Preprints, 14th Conf. on Weather Analysis and Forecasting, Dallas, TX, Amer. Meteor. Soc., 224–229.

    • Search Google Scholar
    • Export Citation
  • Johnson, D. E., P. K. Wang, and J. M. Straka, 1993: Numerical simulations of the 2 August 1981 CCOPE supercell storm with and without ice microphysics. J. Appl. Meteor., 32 , 745759.

    • Search Google Scholar
    • Export Citation
  • Johnson, K. W., P. S. Ray, B. C. Johnson, and R. P. Davies-Jones, 1987: Observations related to the rotational dynamics of the 20 May 1977 tornadic storms. Mon. Wea. Rev., 115 , 24632478.

    • Search Google Scholar
    • Export Citation
  • Kessler, E., 1969: On the Distribution and Continuity of WaterSubstance in Atmospheric Circulations. Meteor. Monogr., No. 32, Amer. Meteor. Soc., 84 pp.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., R. B. Wilhelmson, and P. S. Ray, 1981: Observed and numerically simulated structure of a mature supercell thunderstorm. J. Atmos. Sci., 38 , 15581580.

    • Search Google Scholar
    • Export Citation
  • Lemon, L. R., and C. A. Doswell III,, 1979: Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis. Mon. Wea. Rev., 107 , 11841197.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1990: Numerical prediction of thunderstorms—Has its time come? Quart. J. Roy. Meteor. Soc., 116 , 779798.

  • Lilly, D. K., and B. F. Jewett, 1990: Momentum and kinetic energy budgets of simulated supercell thunderstorms. J. Atmos. Sci., 47 , 707726.

    • Search Google Scholar
    • Export Citation
  • Lin, Y-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22 , 10651092.

    • Search Google Scholar
    • Export Citation
  • McCaul Jr.,, E. W., 1991: Buoyancy and shear characteristics of hurricane–tornado environments. Mon. Wea. Rev., 119 , 19541978.

  • McCaul Jr.,, E. W., and M. L. Weisman, 1996: Simulations of shallow supercell storms in landfalling hurricane environments. Mon. Wea. Rev., 124 , 408429.

    • Search Google Scholar
    • Export Citation
  • McCaul Jr.,, E. W., and C. Cohen, 2000: The sensitivity of simulated storm structure and intensity to the lifted condensation level and the level of free convection. Preprints, 20th Conf. on Severe Local Storms, Orlando, FL, Amer. Meteor. Soc., 595–598.

    • Search Google Scholar
    • Export Citation
  • McCaul Jr.,, E. W., and M. L. Weisman, 2001: The sensitivity of simulated supercell structure and intensity to variations in the shapes of environmental buoyancy and shear profiles. Mon. Wea. Rev., 129 , 664687.

    • Search Google Scholar
    • Export Citation
  • McPherson, R. A., and K. K. Droegemeier, 1991: Numerical predictability experiments of the 20 May 1977 Del City, OK supercell storm. Preprints, Ninth Conf. on Numerical Weather Prediction, Denver, CO, Amer. Meteor. Soc., 734–738.

    • Search Google Scholar
    • Export Citation
  • Mitchell, K. E., and J. B. Hovermale, 1977: A numerical investigation of the severe thunderstorm gust front. Mon. Wea. Rev., 105 , 657675.

    • Search Google Scholar
    • Export Citation
  • Ray, P. S., B. C. Johnson, K. W. Johnson, J. S. Bradberry, J. J. Stephens, K. K. Wagner, R. B. Wilhelmson, and J. B. Klemp, 1981: The morphology of several tornadic storms on 20 May 1977. J. Atmos. Sci., 38 , 16431663.

    • Search Google Scholar
    • Export Citation
  • Richardson, L. F., 1910: The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam. Trans. Roy. Soc. London, 210A , 307357.

    • Search Google Scholar
    • Export Citation
  • Richardson, L. F., . 1927: The deferred approach to the limit. Trans. Roy. Soc. London, 226A , 299361.

  • Richardson, Y., 1999: The influence of horizontally-varying shear and CAPE on numerically simulated convective storms. Ph.D. dissertation, University of Oklahoma, 236 pp. [Available from School of Meteorology, University of Oklahoma, 100 E. Boyd, Rm. 1310, Norman, OK 73019-0628.].

    • Search Google Scholar
    • Export Citation
  • Roache, P. J., 1998: Verification and Validation in Computational Science and Engineering. Hermosa Publishers, 464 pp.

  • Schlichting, H., 1979: Boundary Layer Theory. 7th ed. McGraw-Hill Series in Mechanical Engineering, McGraw-Hill, 817 pp.

  • Stensrud, D. J., J. Bao, and T. T. Warner, 2000: Using initial condition and model physics perturbations in short-range ensemble simulations of mesoscale convective systems. Mon. Wea. Rev., 128 , 20772107.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., and J. R. Anderson, 1993: Numerical simulations of microburst-producing storms: Some results from storms observed during COHMEX. J. Atmos. Sci., 50 , 13291347.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., Y. Liu, and L. Wicker, 1993a: The influence of ice-phase microphysics on convective storm structure and evolution. Preprints, 17th Conf. on Severe Local Storms, St. Louis, MO, Amer. Meteor. Soc., 178–183.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., R. B. Wilhelmson, L. J. Wicker, J. R. Anderson, and K. K. Droegemeier, 1993b: Numerical solutions of a nonlinear density current: A benchmark solution and comparisons. Int. J. Numer. Methods Fluids, 17 , 122.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and N. A. Crook, 1998: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part II: Retrieval experiments of an observed Florida convective storm. J. Atmos. Sci., 55 , 835852.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., and J. Simpson, 1989: Modeling study of a tropical squall-type convective line. J. Atmos. Sci., 46 , 177202.

  • Wang, D., K. K. Droegemeier, D. Jahn, K-M. Xu, M. Xue, and J. Zhang, 2001: NIDS-based intermittent diabatic assimilation and application to storm-scale numerical weather prediction. Preprints, 14th Conf. on Numerical Weather Prediction, Fort Lauderdale, FL, Amer. Meteor. Soc., J125–J128.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110 , 504520.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., . 1984: The structure and classification of numerically simulated convective storms in directionally varying wind shears. Mon. Wea. Rev., 112 , 24792498.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., W. C. Skamarock, and J. B. Klemp, 1997: The resolution dependence of explicitly modeled convective systems. Mon. Wea. Rev., 125 , 527548.

    • Search Google Scholar
    • Export Citation
  • Weygandt, S. S., A. Shapiro, and K. K. Droegemeier, 2002a: Retrieval of initial forecast fields from single-Doppler observations of a supercell thunderstorm. Part I: Single-Doppler velocity retrieval. Mon. Wea. Rev., 130 , 433453.

    • Search Google Scholar
    • Export Citation
  • Weygandt, S. S., . 2002b: Retrieval of initial forecast fields from single-Doppler observations of a supercell thunderstorm. Part II: Thermodynamic retrieval and numerical prediction. Mon. Wea. Rev., 130 , 454476.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and R. B. Wilhelmson, 1993: Numerical simulation of tornadogenesis within a supercell thunderstorm. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., No. 79, Amer. Geophys. Union, 75–88.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., . 1995: Simulation and analysis of tornado development and decay within a three-dimensional supercell thunderstorm. J. Atmos. Sci., 52 , 26752703.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., M. P. Kay, and M. P. Foster, 1997: STORMTIPE-95: A convective storm forecast experiment. Wea. Forecasting, 12 , 427436.

    • Search Google Scholar
    • Export Citation
  • Wilhelmson, R. B., and C. Chen, 1982: A simulation of the development of successive cells along a cold outflow boundary. J. Atmos. Sci., 39 , 14661483.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., and N. O. Rennó, 1993: An analysis of the conditional instability of the tropical atmosphere. Mon. Wea. Rev., 121 , 2136.

    • Search Google Scholar
    • Export Citation
  • Xu, M., J. Bao, T. T. Warner, and D. J. Stensrud, 2001: Effect of time step size in MM5 simulations of a mesoscale convective system. Mon. Wea. Rev., 129 , 502516.

    • Search Google Scholar
    • Export Citation
  • Xue, M., K. K. Droegemeier, V. Wong, A. Shapiro, and K. Brewster, 1995: ARPS version 4.0 user's guide. Center for Analysis and Prediction of Storms, University of Oklahoma, 380 pp. [Available from Center for Analysis and Prediction of Storms, University of Oklahoma, 100 E. Boyd, Rm 1110, Norman, OK 73019-1011.].

    • Search Google Scholar
    • Export Citation
  • Xue, M., . 2000: The Advanced Regional Prediction System (ARPS)—A multiscale nonhydrostatic atmospheric simulation and prediction tool. Part I: Model dynamics and verification. Meteor. Atmos. Phys, 75 , 161193.

    • Search Google Scholar
    • Export Citation
  • Xue, M., and Coauthors. 2001: The Advanced Regional Prediction System (ARPS)—A multiscale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications. Meteor. Atmos. Phys., 76 , 143165.

    • Search Google Scholar
    • Export Citation
  • Xue, M., D-H. Wang, J-D. Gao, K. Brewster, and K. K. Droegemeier, 2002: The Advanced Regional Prediction System (ARPS), storm-scale numerical weather prediction and data assimilation. Meteor. Atmos. Phys., in press.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 340 110 17
PDF Downloads 230 91 21