Direct Influence of Gravity Waves on Surface-Layer Stress during a Cold Air Outbreak, as shown by Synthetic Aperture Radar

Nathaniel S. Winstead Applied Physics Laboratory, University of Washington, Seattle, Washington

Search for other papers by Nathaniel S. Winstead in
Current site
Google Scholar
PubMed
Close
,
Todd D. Sikora United States Naval Academy, Annapolis, Maryland

Search for other papers by Todd D. Sikora in
Current site
Google Scholar
PubMed
Close
,
Donald R. Thompson Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland

Search for other papers by Donald R. Thompson in
Current site
Google Scholar
PubMed
Close
, and
Pierre D. Mourad Applied Physics Laboratory, and Department of Neurological Surgery, University of Washington, Seattle, Washington

Search for other papers by Pierre D. Mourad in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Synthetic aperture radar (SAR) images of oceans and the Great Lakes have provided a highly detailed means of observing atmospheric boundary layer phenomena such as convection, land breezes, and internal gravity waves. This is possible because the backscattered radiation detected by SAR can be dominated by scattering from wind-driven capillary waves whose spatial variation is visible as patterns in the SAR images. In this paper, we present two case studies in which SAR images taken over Lake Superior demonstrate spatial variability in the surface wind stress created over the lake by coincident gravity waves and boundary layer convection during cold air outbreaks. Of particular interest is the direct influence of the gravity waves on the lake-surface stress despite the intervening highly convective atmosphere as well as the detailed view of the fetch dependence of that stress.

Current affiliation: Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland

Corresponding author address: Dr. Nathaniel S. Winstead, Johns Hopkins APL, Ocean Remote Sensing Group, Space Department, 11100 Johns Hopkins Road, Laurel, MD 20723. Email: winstnsl@cyclone.jhuapl.edu

Abstract

Synthetic aperture radar (SAR) images of oceans and the Great Lakes have provided a highly detailed means of observing atmospheric boundary layer phenomena such as convection, land breezes, and internal gravity waves. This is possible because the backscattered radiation detected by SAR can be dominated by scattering from wind-driven capillary waves whose spatial variation is visible as patterns in the SAR images. In this paper, we present two case studies in which SAR images taken over Lake Superior demonstrate spatial variability in the surface wind stress created over the lake by coincident gravity waves and boundary layer convection during cold air outbreaks. Of particular interest is the direct influence of the gravity waves on the lake-surface stress despite the intervening highly convective atmosphere as well as the detailed view of the fetch dependence of that stress.

Current affiliation: Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland

Corresponding author address: Dr. Nathaniel S. Winstead, Johns Hopkins APL, Ocean Remote Sensing Group, Space Department, 11100 Johns Hopkins Road, Laurel, MD 20723. Email: winstnsl@cyclone.jhuapl.edu

Save
  • Alpers, W., and G. Stilke, 1996: Observations of a nonlinear wave disturbance in the marine atmosphere by the synthetic aperture radar aboard the ERS-1 satellite. J. Geophys. Res., 101 , 65136525.

    • Search Google Scholar
    • Export Citation
  • Atkinson, B. W., and J. W. Zhang, 1996: Mesoscale shallow convection in the atmosphere. Rev. Geophys., 34 , 403431.

  • Balaji, V., and T. L. Clark, 1988: Scale selection in locally forced convective fields and the initiation of deep cumulus. J. Atmos. Sci., 45 , 31883211.

    • Search Google Scholar
    • Export Citation
  • Clark, T. L., T. Hauf, and J. P. Kuettner, 1986: Convectively forced internal gravity waves: Results from two-dimensional numerical experiments. Quart. J. Roy. Meteor. Soc., 112 , 899926.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1986: Mountain waves. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 793 pp.

  • Emery, W. J., Y. Yu, G. A. Wick, P. Schluessel, and R. W. Reynolds, 1994: Correcting infrared satellite estimates of sea surface temperature for atmospheric water vapor attenuation. J. Geophys. Res., 99 , 52195236.

    • Search Google Scholar
    • Export Citation
  • Holmboe, J., and H. Klieforth, 1957: The mountain wave. University of California, Los Angeles, Final Rep. Contract AF19(604)-728 (DDC No. AD 133606), 290 pp.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1992: An Introduction to Dynamic Meteorology. Academic Press, 511 pp.

  • Katsaros, K. B., P. W. Vachon, P. G. Black, P. P. Dodge, and E. W. Uhlhorn, 2000: Wind fields from SAR: Could they improve our understanding of storm dynamics? Johns Hopkins APL Tech. Dig., 21 , 8693.

    • Search Google Scholar
    • Export Citation
  • Kelly, R. D., 1984: Horizontal roll and boundary-layer interrelationships observed over Lake Michigan. J. Atmos. Sci., 41 , 18161826.

  • Koch, S. E., and C. O'Handley, 1997: Operational forecasting and detection of mesoscale gravity waves. Wea. Forecasting, 12 , 253281.

  • Kuettner, J. P., P. A. Hildebrand, and T. L. Clark, 1987: Convection waves: Observations of gravity wave systems over convectively active boundary layers. Quart. J. Roy. Meteor. Soc., 113 , 445468.

    • Search Google Scholar
    • Export Citation
  • Miles, J. W., 1961: On the stability of heterogeneous shear flows. J. Fluid Mech., 10 , 496508.

  • Monaldo, F. M., D. R. Thompson, R. C. Beal, W. G. Pichel, and P. Clementé-Colón, 2001: Comparison of SAR-derived wind speed with model predictions and ocean buoy measurements. IEEE Trans. Geosci. Remote Sens., 39 , 25872600.

    • Search Google Scholar
    • Export Citation
  • Mourad, P. D., 1999: Footprints of atmospheric turbulence in synthetic aperture radar images of the ocean surface—A review. Air–Sea Exchange: Physics, Chemistry, Dynamics, and Statistics, G. L. Geernaert, Ed., Kluwer Academic, 269–290.

    • Search Google Scholar
    • Export Citation
  • Mourad, P. D., and R. A. Brown, 1990: Multiscale large eddy states in weakly stratified planetary boundary layers. J. Atmos. Sci., 47 , 414438.

    • Search Google Scholar
    • Export Citation
  • Mourad, P. D., and B. A. Walter, 1996: Viewing a cold air outbreak using satellite-based synthetic aperture radar and Advanced Very High Resolution Radiometer Imagery. J. Geophys. Res., 101 , 1639116400.

    • Search Google Scholar
    • Export Citation
  • Mourad, P. D., D. R. Thompson, and D. C. Vandemark, 2000: Extracting fine-scale wind fields from synthetic aperture radar images of the ocean surface. Johns Hopkins APL Tech. Dig., 21 , 108115.

    • Search Google Scholar
    • Export Citation
  • Müller, G., B. Brümmer, and W. Alpers, 1999: Roll convection within an Arctic cold air outbreak: Interpretation of in situ aircraft measurements and spaceborne SAR imagery by a three-dimensional atmospheric model. Mon. Wea. Rev., 127 , 363380.

    • Search Google Scholar
    • Export Citation
  • Queney, P., 1952: Sierra Wave Project. Air Force Scientific Rep. 1, University of California, Los Angeles, 150 pp.

  • Queney, P., G. Corby, N. Gerbier, H. Koschmeider, and J. Zirep, 1960: The airflow over mountains. WMO Tech. Note 34, 135 pp.

  • Rees, W. G., and S. P. James, 1992: Angular variation of the infrared emissivity of ice and water surfaces. Int. J. Remote Sens., 13 , 28732886.

    • Search Google Scholar
    • Export Citation
  • Rogers, D. P., D. W. Johnson, and C. A. Friehe, 1995: The stable internal boundary layer over a coastal sea. Part II: Gravity waves and momentum balance. J. Atmos. Sci., 52 , 684696.

    • Search Google Scholar
    • Export Citation
  • Sang, J. G., 1991: On formation of convective roll vortices by internal gravity waves: A theoretical study. Meteor. Atmos. Phys., 46 , 1528.

    • Search Google Scholar
    • Export Citation
  • Scorer, R. S., 1949: Theory of waves in the lee of mountains. Quart. J. Roy. Meteor. Soc., 75 , 4156.

  • Scorer, R. S., . 1952: Airflow over mountains. Sci. Prog., 40 , 466473.

  • Sikora, T. D., G. S. Young, R. C. Beal, and J. B. Edson, 1995: On the use of spaceborne synthetic aperture radar imagery of the sea surface in detecting the presence and structure of the convective marine atmospheric boundary layer. Mon. Wea. Rev., 123 , 36233632.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. R., and R. C. Beal, 2000: Mapping high resolution wind fields using synthetic aperture radar. Johns Hopkins APL Tech. Dig., 21 , 5867.

    • Search Google Scholar
    • Export Citation
  • Thomson, R. E., P. W. Vachon, and G. A. Borstad, 1992: Airborne synthetic aperture radar imagery of atmospheric gravity waves. J. Geophys. Res., 97 , 1424914257.

    • Search Google Scholar
    • Export Citation
  • Thompson, T. W., W. T. Liu, and D. E. Weissman, 1983: Synthetic aperture radar observation of ocean roughness from rolls in an unstable marine boundary layer. Geophys. Res. Lett., 10 , 1721175.

    • Search Google Scholar
    • Export Citation
  • Turner, J. S., 1973: Buoyancy Effects in Fluids. Cambridge University Press, 367 pp.

  • Vachon, P. W., O. M. Johannessen, and J. A. Johannessen, 1994: An ERS-1 synthetic aperture radar image of atmospheric lee waves. J. Geophys. Res., 99 , 2248322490.

    • Search Google Scholar
    • Export Citation
  • Vachon, P. W., and Coauthors. 2000: Canadian progress toward marine and coastal applications of synthetic aperture radar. Johns Hopkins APL Tech. Dig., 21 , 3341.

    • Search Google Scholar
    • Export Citation
  • Vandemark, D., P. D. Mourad, T. L. Crawford, C. A. Vogel, J. Sin, S. A. Bailey, and B. Chapron, 2001: Measured changes in ocean surface roughness due to atmospheric boundary layer rolls. J. Geophys. Res., 106 (C3) 46394654.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., J. W. Wilson, R. Wakimoto, and N. A. Crook, 1997: Horizontal convective rolls: Determining the environmental conditions supporting their existence and characteristics. Mon. Wea. Rev., 125 , 505526.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., T. W. Horst, and J. W. Wilson, 1999: An observational study of the evolution of horizontal convective rolls. Mon. Wea. Rev., 127 , 21602179.

    • Search Google Scholar
    • Export Citation
  • Wilson, D. K., 1996: Empirical orthogonal function analysis of the weakly convective atmospheric boundary layer. Part I: Eddy structures. J. Atmos. Sci., 53 , 801823.

    • Search Google Scholar
    • Export Citation
  • Worthington, R. M., 2001: Alignment of mountain lee waves viewed using NOAA AVHRR imagery, MST radar, and SAR. Int. J. Remote Sens., 22 , 13611374.

    • Search Google Scholar
    • Export Citation
  • Zheng, Q., X. Yan, V. Klemas, C. Ho, N. Kuo, and Z. Wang, 1998: Coastal lee waves on ERS-1 SAR images. J. Geophys. Res., 103 , 79797993.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 176 70 13
PDF Downloads 64 18 0