A Conservative Quasi-Monotone Semi-Lagrangian Scheme

Rodolfo Bermejo Departamento de Matemática Aplicada, Universidad Complutense de Madrid, Madrid, Spain

Search for other papers by Rodolfo Bermejo in
Current site
Google Scholar
PubMed
Close
and
Justo Conde Instituto Nacional de Meteorología, Madrid, Spain

Search for other papers by Justo Conde in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A conservative quasi-monotone semi-Lagrangian scheme is developed in this paper. Mass conservation is achieved via Lagrange multipliers. The new scheme is computationally efficient. Numerical examples with linear and nonlinear advection problems illustrate the properties of the scheme.

Corresponding author address: Rodolfo Bermejo, Facultad de CC. Matemáticas, Departamento de Matemática Aplicada, Universidad Complutense de Madrid, 28040 Madrid, Spain. Email: rbermejo@amb-to.uclm.es

Abstract

A conservative quasi-monotone semi-Lagrangian scheme is developed in this paper. Mass conservation is achieved via Lagrange multipliers. The new scheme is computationally efficient. Numerical examples with linear and nonlinear advection problems illustrate the properties of the scheme.

Corresponding author address: Rodolfo Bermejo, Facultad de CC. Matemáticas, Departamento de Matemática Aplicada, Universidad Complutense de Madrid, 28040 Madrid, Spain. Email: rbermejo@amb-to.uclm.es

Save
  • Bermejo, R., 2001: Analysis of a class of quasi-monotone and conservative semi-Lagrangian advection schemes. Numer. Math, 87 , 597623.

    • Search Google Scholar
    • Export Citation
  • Bermejo, R., and A. Staniforth, 1992: The conversion of semi-Lagrangian advection schemes to quasi-monotone schemes. Mon. Wea. Rev, 120 , 26222632.

    • Search Google Scholar
    • Export Citation
  • Boris, J. P., and D. L. Book, 1973: Flux corrected transport I, SHASTA, a fluid transport algorithm that works. J. Comput. Phys, 11 , 3869.

    • Search Google Scholar
    • Export Citation
  • Chorin, A. J., and J. E. Marsden, 1990: A Mathematical Introduction to Fluid Mechanics. Texts in Applied Mathematics, Vol. 4, Springer-Verlag, 168 pp.

    • Search Google Scholar
    • Export Citation
  • Colella, P., and P. R. Woodward, 1984: The piecewise parabolic method (PPM) for gas-dynamical simulations. J. Comput. Phys, 54 , 174205.

    • Search Google Scholar
    • Export Citation
  • Gravel, S., and A. Staniforth, 1994: A mass conserving semi-Lagrangian scheme for the shallow water equations. Mon. Wea. Rev, 122 , 243248.

    • Search Google Scholar
    • Export Citation
  • Hansbo, P., 2000: A free-Lagrange finite element method using space–time elements. Comput. Methods Appl. Mech. Eng, 188 , 347361.

  • LeVeque, J. R., 1992: Numerical Methods for Conservation Laws. Lectures in Mathematics, ETH Zürich and Birkhäuser-Verlag, 214 pp.

  • Priestley, A., 1993: A quasi-conservative version of the semi-Lagrangian advection scheme. Mon. Wea. Rev, 121 , 621629.

  • Rančič, M., 1992: Semi-Lagrangian piecewise biparabolic scheme for two-dimensional horizontal advection of a passive scalar. Mon. Wea. Rev, 120 , 13941406.

    • Search Google Scholar
    • Export Citation
  • Raviart, P. A., 1985: An analysis of particle methods. Numerical Methods in Fluid Dynamics, F. Brezzi, Ed., Lecture Notes in Mathematics, Vol. 1127, Springer-Verlag.

    • Search Google Scholar
    • Export Citation
  • Sasaki, Y. K., 1976: Variational design of finite difference schemes for initial value problems with an integral invariant. J. Comput. Phys, 21 , 270278.

    • Search Google Scholar
    • Export Citation
  • Temperton, C., and A. Staniforth, 1987: An efficient two-time-level semi-Lagrangian semi-implicit integration scheme. Quart. J. Roy. Meteor. Soc, 113 , 10251039.

    • Search Google Scholar
    • Export Citation
  • Zalesak, S. T., 1979: Fully multidimensional flux corrected transport algorihms for fluids. J. Comput. Phys, 31 , 335362.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 576 275 47
PDF Downloads 308 79 17