Reflectivity, Ice Scattering, and Lightning Characteristics of Hurricane Eyewalls and Rainbands. Part I: Quantitative Description

Daniel J. Cecil Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by Daniel J. Cecil in
Current site
Google Scholar
PubMed
Close
,
Edward J. Zipser Department of Meteorology, University of Utah, Salt Lake City, Utah

Search for other papers by Edward J. Zipser in
Current site
Google Scholar
PubMed
Close
, and
Stephen W. Nesbitt Department of Meteorology, University of Utah, Salt Lake City, Utah

Search for other papers by Stephen W. Nesbitt in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Covering December 1997 through December 1998, 261 overpasses of 45 hurricanes by the Tropical Rainfall Measuring Mission (TRMM) satellite are used to document the observed radar reflectivity values, passive microwave ice scattering magnitudes, and total lightning (cloud to ground plus in cloud). These parameters are interpreted as describing convective vigor or intensity, with greater reflectivities (particularly aloft), greater ice scattering (lower 85- and 37-GHz brightness temperatures), and increased lightning frequency indicating more intense convection. For each parameter, the full distribution of values observed during the TRMM satellite's first year is presented for specific regions. Properties of three regions of the hurricane (eyewall, inner rainband, and outer rainband) are treated separately and compared to other tropical oceanic and tropical continental precipitation systems. Reflectivity profiles and ice scattering signatures are found to be fairly similar for both hurricane and nonhurricane tropical oceanic precipitation systems, although the hurricane inner rainband region yields the weakest of these convective signatures. When normalized by the area experiencing significant convection, the outer rainband region produces more lightning than the rest of the hurricane or nonhurricane tropical oceanic systems. As a whole, the tropical oceanic precipitation systems (both hurricane and nonhurricane) are dominated by stratiform rain and relatively weak convection.

Current affiliation: National Space Science and Technology Center, University of Alabama in Huntsville, Huntsville, Alabama

Corresponding author address: Daniel J. Cecil, National Space Science and Technology Center, University of Alabama in Huntsville, 320 Sparkman Dr., Huntsville, AL 35805. Email: Daniel.Cecil@msfc.nasa.gov

Abstract

Covering December 1997 through December 1998, 261 overpasses of 45 hurricanes by the Tropical Rainfall Measuring Mission (TRMM) satellite are used to document the observed radar reflectivity values, passive microwave ice scattering magnitudes, and total lightning (cloud to ground plus in cloud). These parameters are interpreted as describing convective vigor or intensity, with greater reflectivities (particularly aloft), greater ice scattering (lower 85- and 37-GHz brightness temperatures), and increased lightning frequency indicating more intense convection. For each parameter, the full distribution of values observed during the TRMM satellite's first year is presented for specific regions. Properties of three regions of the hurricane (eyewall, inner rainband, and outer rainband) are treated separately and compared to other tropical oceanic and tropical continental precipitation systems. Reflectivity profiles and ice scattering signatures are found to be fairly similar for both hurricane and nonhurricane tropical oceanic precipitation systems, although the hurricane inner rainband region yields the weakest of these convective signatures. When normalized by the area experiencing significant convection, the outer rainband region produces more lightning than the rest of the hurricane or nonhurricane tropical oceanic systems. As a whole, the tropical oceanic precipitation systems (both hurricane and nonhurricane) are dominated by stratiform rain and relatively weak convection.

Current affiliation: National Space Science and Technology Center, University of Alabama in Huntsville, Huntsville, Alabama

Corresponding author address: Daniel J. Cecil, National Space Science and Technology Center, University of Alabama in Huntsville, 320 Sparkman Dr., Huntsville, AL 35805. Email: Daniel.Cecil@msfc.nasa.gov

Save
  • Barnes, G. M., E. J. Zipser, D. P. Jorgensen, and F. Marks Jr., 1983: Mesoscale and convective structure of a hurricane rainband. J. Atmos. Sci., 40 , 2125–2137.

    • Search Google Scholar
    • Export Citation
  • Battan, L. J., 1973: Radar Observation of the Atmosphere. University of Chicago Press, 234 pp.

  • Black, M. L., R. W. Burpee, and F. D. Marks Jr., 1996: Vertical motion characteristics of tropical cyclones determined with airborne Doppler radial velocities. J. Atmos. Sci., 53 , 1887–1909.

    • Search Google Scholar
    • Export Citation
  • Black, P. G., R. A. Black, J. Hallett, and W. A. Lyons, 1986: Electrical activity of the hurricane. Preprints, 23d Conf. on Radar Meteorology, Snowmass, CO, Amer. Meteor. Soc., J277–J280.

    • Search Google Scholar
    • Export Citation
  • Black, R. A., and J. Hallett, 1986: Observations of the distribution of ice in hurricanes. J. Atmos. Sci., 43 , 802–822.

  • Black, R. A., and J. Hallett, . 1999: Electrification of the hurricane. J. Atmos. Sci., 56 , 2004–2028.

  • Boccippio, D. J., S. J. Goodman, and S. Heckman, 2000: Regional differences in tropical lightning distributions. J. Appl. Meteor., 39 , 2231–2248.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., and E. J. Zipser, 1999: Relationships between tropical cyclone intensity and satellite-based indicators of inner core convection: 85-GHz ice-scattering signature and lightning. Mon. Wea. Rev., 127 , 103–123.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., and E. J. Zipser, . 2002: Reflectivity, ice scattering, and lightning characteristics of hurricane eyewalls and rainbands. Part II: Intercomparison of observations. Mon. Wea. Rev., 130 , 785–801.

    • Search Google Scholar
    • Export Citation
  • Christian, H. J., and Coauthors. 1999: The Lightning Imaging Sensor. Proc. 11th Int. Conf. on Atmospheric Electricity, Guntersville, AL, International Commission on Atmos. Electricity, 746–749. [Available from NASA Center for AeroSpace Information, 800 Elkridge Landing Rd, Linthicum Heights, MD 21090-2934.].

    • Search Google Scholar
    • Export Citation
  • Houze, R. A. Jr,, F. D. Marks Jr., and R. A. Black, 1992: Dual-aircraft investigation of the inner core of Hurricane Norbert. Part II: Mesoscale distribution of ice particles. J. Atmos. Sci., 49 , 943–962.

    • Search Google Scholar
    • Export Citation
  • Igau, R. C., M. A. LeMone, and D. Wei, 1999: Updraft and downdraft cores in TOGA COARE: Why so many buoyant downdraft cores? J. Atmos. Sci., 56 , 2232–2245.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., T. Kozu, R. Meneghini, J. Awaka, and K. Okamoto, 2000: Rain-profiling algorithm for the TRMM precipitation radar. J. Appl. Meteor., 39 , 2038–2052.

    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., 1985: Charge separation in thunderstorms: Small scale processes. J. Geophys. Res., 90 , 6026–6032.

  • Jayaratne, E. R., C. P. R. Saunders, and J. Hallett, 1983: Laboratory studies of the charging of soft-hail during ice crystal interactions. Quart J. Roy. Meteor. Soc., 109 , 609–630.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., 1984: Mesoscale and convective scale characteristics of mature hurricanes. Part I: General observations by research aircraft. J. Atmos. Sci., 41 , 1268–1285.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., E. J. Zipser, and M. A. LeMone, 1985: Vertical motions in intense hurricanes. J. Atmos. Sci., 42 , 839–856.

  • Jorgensen, D. P., and M. A. LeMone, 1989: Vertical velocity characteristic of oceanic convection. J. Atmos. Sci., 46 , 621–640.

  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15 , 809–817.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors. 2000: The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteor., 39 , 1965–1982.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., and E. J. Zipser, 1980: Cumulonimbus vertical velocity events in GATE. Part I: Diameter intensity and mass flux. J. Atmos. Sci., 37 , 2444–2457.

    • Search Google Scholar
    • Export Citation
  • Ligda, M. G. H., 1955: Analysis of motion of small precipitation areas and bands in the hurricane August 23–28, 1949. Department of Meteorology Tech. Note 3, Massachusetts Institute of Technology, 36 pp.

    • Search Google Scholar
    • Export Citation
  • Lucas, C., E. J. Zipser, and M. A. LeMone, 1994: Vertical velocity in oceanic convection off tropical Australia. J. Atmos. Sci., 51 , 3183–3193.

    • Search Google Scholar
    • Export Citation
  • Lyons, W. A., and C. S. Keen, 1994: Observations of lightning in convective supercells within tropical storms and hurricanes. Mon. Wea. Rev., 122 , 1897–1916.

    • Search Google Scholar
    • Export Citation
  • Marks, F. D. Jr,, and R. A. Houze Jr., 1987: Inner core structure of Hurricane Alicia from airborne Doppler radar observations. J. Atmos. Sci., 44 , 1296–1317.

    • Search Google Scholar
    • Export Citation
  • Marks, F. D. Jr,, D. Atlas, and P. T. Willis, 1993: Probability-matched reflectivity–rainfall relations for a hurricane from aircraft observations. J. Appl. Meteor., 32 , 1134–1141.

    • Search Google Scholar
    • Export Citation
  • Mohr, K. I., and E. J. Zipser, 1996: Defining mesoscale convective systems by their 85-GHz ice-scattering signatures. Bull. Amer. Meteor. Soc., 77 , 1179–1189.

    • Search Google Scholar
    • Export Citation
  • Mohr, K. I., J. S. Famiglietti, and E. J. Zipser, 1999: The contribution to tropical rainfall with respect to convective system type, size, and intensity estimated from the 85-GHz ice-scattering signature. J. Appl. Meteor., 38 , 596–606.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., P. Moore, and V. Idone, 1999: Convective structure of hurricanes as revealed by lightning locations. Mon. Wea. Rev., 127 , 520–534.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., E. J. Zipser, and D. J. Cecil, 2000: A census of precipitation features in the Tropics using TRMM: Radar, ice scattering, and lightning observations. J. Climate, 13 , 4087–4106.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., and S. A. Rutledge, 2001: Regional variability in tropical convection: Observations from TRMM. J. Climate, 14 , 3566–3586.

    • Search Google Scholar
    • Export Citation
  • Reynolds, S. E., M. Brook, and M. F. Gourley, 1957: Thunderstorm charge separation. J. Meteor., 14 , 426–436.

  • Rodgers, E. B., R. F. Adler, and H. F. Pierce, 2000: Contribution of tropical cyclones to the North Pacific climatological rainfall as observed from satellites. J. Appl. Meteor., 39 , 1658–1678.

    • Search Google Scholar
    • Export Citation
  • Samsury, C. E., and R. E. Orville, 1994: Cloud-to-ground lightning in tropical cyclones: A study of Hurricanes Hugo (1989) and Jerry (1989). Mon. Wea. Rev., 122 , 1887–1896.

    • Search Google Scholar
    • Export Citation
  • Samsury, C. E., and E. J. Zipser, 1995: Secondary wind maxima in hurricanes: Airflow and relationship to rainbands. Mon. Wea. Rev., 123 , 3502–3517.

    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., and S. L. Peck, 1998: Laboratory studies of the influence of the rime accretion rate on charge transfer during crystal/graupel collisions. J. Geophys. Res., 103 , 13949–13956.

    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., W. D. Keith, and R. P. Mitzeva, 1991: The influence of liquid water on thunderstorm charging. J. Geophys. Res., 96 , 11007–11017.

    • Search Google Scholar
    • Export Citation
  • Senn, H. V., and H. W. Hiser, 1959: On the origin of hurricane spiral rainbands. J. Meteor., 16 , 419–426.

  • Spencer, R. W., 1986: A satellite passive 37-GHz scattering-based method for measuring oceanic rain rates. J. Climate Appl. Meteor., 25 , 754–766.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., H. M. Goodman, and R. E. Hood, 1989: Precipitation retrieval over land and ocean with the SSM/I: Identification and characteristics of the scattering signal. J. Atmos. Oceanic Technol., 6 , 254–273.

    • Search Google Scholar
    • Export Citation
  • Szoke, E. J., E. J. Zipser, and D. P. Jorgensen, 1986: A radar study of convective cells in mesoscale convective systems in GATE. Part I: Vertical profile statistics and comparisons with hurricane cells. J. Atmos. Sci., 43 , 182–197.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., 1978: Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci., 35 , 1536–1548.

  • Tibbets, R. T., and T. N. Krishnamurti, 2000: An intercomparison of hurricane forecasts using SSM/I and TRMM rain rate algorithm(s). Meteor. Atmos. Phys., 74 , 37–49.

    • Search Google Scholar
    • Export Citation
  • Toracinta, E. R., D. J. Cecil, E. J. Zipser, and S. W. Nesbitt, 2002: Radar, passive microwave, and lightning characteristics of precipitating systems in the Tropics. Mon. Wea. Rev., 130 , 802–824.

    • Search Google Scholar
    • Export Citation
  • Wexler, H., 1947: Structure of hurricanes as determined by radar. Ann. N. Y. Acad. Sci., 48 , 821–844.

  • Wilheit, T. T., 1986: Some comments on passive microwave measurement of rain. Bull. Amer. Meteor. Soc., 67 , 1226–1232.

  • Willoughby, H. E., 1990: Temporal changes of the primary circulation in tropical cyclones. J. Atmos. Sci., 47 , 242–264.

  • Willoughby, H. E., F. D. Marks Jr., and R. J. Feinberg, 1984: Stationary and moving convective bands in hurricanes. J. Atmos. Sci., 41 , 3189–3211.

    • Search Google Scholar
    • Export Citation
  • Wu, R., and J. A. Weinman, 1984: Microwave radiances from precipitating clouds containing aspherical ice, combined phase, and liquid hydrometeors. J. Geophys. Res., 89 , 7170–7178.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., and K. R. Lutz, 1994: The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability? Mon. Wea. Rev., 122 , 1751–7159.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3165 1954 66
PDF Downloads 826 172 10