Radar, Passive Microwave, and Lightning Characteristics of Precipitating Systems in the Tropics

E. R. Toracinta Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by E. R. Toracinta in
Current site
Google Scholar
PubMed
Close
,
Daniel J. Cecil Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by Daniel J. Cecil in
Current site
Google Scholar
PubMed
Close
,
Edward J. Zipser Department of Meteorology, University of Utah, Salt Lake City, Utah

Search for other papers by Edward J. Zipser in
Current site
Google Scholar
PubMed
Close
, and
Stephen W. Nesbitt Department of Meteorology, University of Utah, Salt Lake City, Utah

Search for other papers by Stephen W. Nesbitt in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The bulk radar reflectivity structures, 85- and 37-GHz brightness temperatures, and lightning characteristics of precipitating systems in tropical Africa, South America, the east Pacific, and west Pacific are documented using data from the Tropical Rainfall Measuring Mission (TRMM) satellite during August, September, and October of 1998. The particular focus is on precipitation features [defined as a contiguous area ≥75 km2 with either a near-surface reflectivity ≥20 dBZ or an 85-GHz polarization-corrected temperature (PCT) ≤ 250 K] with appreciable rainfall, which account for the bulk of the total rainfall and lightning flash density in their respective regions. Systems over the tropical continents typically have greater magnitudes of reflectivity extending to higher altitudes than tropical oceanic systems. This is consistent with the observation of stronger ice scattering signatures (lower 85- and 37-GHz PCT) in the systems over land. However, when normalized by reflectivity heights, tropical continental features consistently have higher 85-GHz PCT than tropical oceanic features. It is inferred that greater supercooled water contents aloft in the tropical continental systems contribute to this brightness temperature difference.

Lightning (as detected by the Lightning Imaging Sensor) is much more likely in tropical continental features than tropical oceanic features with similar brightness temperatures or similar reflectivity heights. Vertical profiles of radar reflectivity add additional information to the nonunique lightning–brightness temperature relationships showing that features with lightning tend to have greater magnitudes of reflectivity and smaller decreases of reflectivity with height above the freezing level than systems without detected lightning.

Regional comparisons of the lightning, radar, and microwave signatures of precipitating features show that, over the oceans, the west Pacific has the highest frequency of intense precipitation features (by minimum PCT or maximum reflectivity height). Over land, the intense precipitation features occur more frequently in Africa. These observations are consistent with the relative differences in lightning flash density between the land and ocean regions. The quantitative database of land and ocean features presented here provides a substantial observational framework against which cloud and radiative transfer model results can be tested.

Current affiliation: Polar Meteorology Group, Byrd Polar Research Center, The Ohio State University, Columbus, Ohio

Current affiliation: National Space Science and Technology Center, University of Alabama in Huntsville, Huntsville, Alabama

Corresponding author address: Dr. E. Richard Toracinta, Polar Meteorology Group, Byrd Polar Research Center, The Ohio State University, 108 Scott Hall, 1090 Carmack Rd., Columbus, OH 43210-1002. Email: toracint@polarmet1.mps.ohio-state.edu

Abstract

The bulk radar reflectivity structures, 85- and 37-GHz brightness temperatures, and lightning characteristics of precipitating systems in tropical Africa, South America, the east Pacific, and west Pacific are documented using data from the Tropical Rainfall Measuring Mission (TRMM) satellite during August, September, and October of 1998. The particular focus is on precipitation features [defined as a contiguous area ≥75 km2 with either a near-surface reflectivity ≥20 dBZ or an 85-GHz polarization-corrected temperature (PCT) ≤ 250 K] with appreciable rainfall, which account for the bulk of the total rainfall and lightning flash density in their respective regions. Systems over the tropical continents typically have greater magnitudes of reflectivity extending to higher altitudes than tropical oceanic systems. This is consistent with the observation of stronger ice scattering signatures (lower 85- and 37-GHz PCT) in the systems over land. However, when normalized by reflectivity heights, tropical continental features consistently have higher 85-GHz PCT than tropical oceanic features. It is inferred that greater supercooled water contents aloft in the tropical continental systems contribute to this brightness temperature difference.

Lightning (as detected by the Lightning Imaging Sensor) is much more likely in tropical continental features than tropical oceanic features with similar brightness temperatures or similar reflectivity heights. Vertical profiles of radar reflectivity add additional information to the nonunique lightning–brightness temperature relationships showing that features with lightning tend to have greater magnitudes of reflectivity and smaller decreases of reflectivity with height above the freezing level than systems without detected lightning.

Regional comparisons of the lightning, radar, and microwave signatures of precipitating features show that, over the oceans, the west Pacific has the highest frequency of intense precipitation features (by minimum PCT or maximum reflectivity height). Over land, the intense precipitation features occur more frequently in Africa. These observations are consistent with the relative differences in lightning flash density between the land and ocean regions. The quantitative database of land and ocean features presented here provides a substantial observational framework against which cloud and radiative transfer model results can be tested.

Current affiliation: Polar Meteorology Group, Byrd Polar Research Center, The Ohio State University, Columbus, Ohio

Current affiliation: National Space Science and Technology Center, University of Alabama in Huntsville, Huntsville, Alabama

Corresponding author address: Dr. E. Richard Toracinta, Polar Meteorology Group, Byrd Polar Research Center, The Ohio State University, 108 Scott Hall, 1090 Carmack Rd., Columbus, OH 43210-1002. Email: toracint@polarmet1.mps.ohio-state.edu

Save
  • Adler, R. F., H-Y. M. Yeh, N. Prasad, W-K. Tao, and J. Simpson, 1991: Microwave simulations of a tropical rainfall system with a three-dimensional cloud model. J. Appl. Meteor., 30 , 924953.

    • Search Google Scholar
    • Export Citation
  • Black, R. A., and J. Hallett, 1999: Electrification of the hurricane. J. Atmos. Sci., 56 , 20042028.

  • Boccippio, D. J., S. J. Goodman, and S. Heckman, 2000: Regional differences in tropical lightning distributions. J. Appl. Meteor., 39 , 22312248.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., and S. A. Rutledge, 2000: The relationship between precipitation and lightning in tropical island convection: A C-band polarimetric radar study. Mon. Wea. Rev., 128 , 26872710.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., and E. J. Zipser, 2002: Reflectivity, ice scattering, and lightning characteristics of hurricane eyewalls and rainbands. Part II: Intercomparison of observations. Mon. Wea. Rev., 130 , 785801.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., E. J. Zipser, and S. W. Nesbitt, 2002: Reflectivity, ice scattering, and lightning characteristics of hurricane eyewalls and rainbands. Part I: Quantitative description. Mon. Wea. Rev., 130 , 769784.

    • Search Google Scholar
    • Export Citation
  • Christian, H. J., 1999: . Atmospheric Electricity, Guntersville, AL, NASA/CP-1999-209261, 715–718.

  • Christian, H. J., and Coauthors. 1999: Global frequency and distribution of lightning as observed by the Optical Transient Detector (OTD). Proc. 11th Int. Conf. on Atmospheric Electricity, Guntersville, AL, NASA/CP-1999-209261, 726–729.

    • Search Google Scholar
    • Export Citation
  • Dye, J. E., and Coauthors. 1986: Early electrification and precipitation development in a small, isolated Montana cumulonimbus. J. Geophys. Res., 91 , 12311247.

    • Search Google Scholar
    • Export Citation
  • Dye, J. E., W. P. Winn, J. J. Jones, and D. W. Breed, 1989: The electrification of New Mexico thunderstorms 1. Relationship between precipitation development and the onset of electrification. J. Geophys. Res., 94 , 84638656.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., N. C. Grody, and G. F. Marks, 1994: Effects of surface conditions on rain identification using the DMSP-SSM/I. Remote Sens. Rev., 11 , 195209.

    • Search Google Scholar
    • Export Citation
  • Fulton, R., and G. M. Heymsfield, 1991: Microphysical and radiative characteristics of convective clouds during COHMEX. J. Appl. Meteor., 30 , 98116.

    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., and H. Christian, 1993: Global observations of lightning. Atlas of Satellite Observations Related to Global Change, R. J. Gurney, J. L. Foster, and C. L. Parkinson, Eds., Cambridge University Press, 191–219.

    • Search Google Scholar
    • Export Citation
  • Grody, N. C., 1991: Classification of snow cover and precipitation using the Special Sensor Microwave/Imager. J. Geophys. Res., 96 , 74237435.

    • Search Google Scholar
    • Export Citation
  • Hakkarinen, I. M., and R. F. Adler, 1988: Observations of precipitating convective systems at 92 and 183 GHz: Aircraft results. Meteor. Atmos. Phys., 38 , 164182.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., and R. Fulton, 1988: Comparison of high-altitude remote aircraft measurements with the radar structure of an Oklahoma thunderstorm: Implications for precipitation estimation from space. Mon. Wea. Rev., 116 , 11571174.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., and R. Fulton, . 1994: Passive microwave and infrared structure of mesoscale convective systems. Meteor. Atmos. Phys., 54 , 123139.

    • Search Google Scholar
    • Export Citation
  • Jayaratne, E. R., C. P. R. Saunders, and J. Hallett, 1983: Laboratory studies of the charging of soft-hail during ice crystal interactions. Quart. J. Roy. Meteor. Soc., 109 , 609630.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., and M. A. LeMone, 1989: Vertical velocity characteristics of oceanic convection. J. Atmos. Sci., 46 , 621640.

  • Jorgensen, D. P., E. J. Zipser, and M. A. LeMone, 1985: Vertical motions in intense hurricanes. J. Atmos. Sci., 42 , 839856.

  • Keighton, S. J., H. B. Bluestein, and D. R. MacGorman, 1991: The evolution of a severe mesoscale convective system: Cloud-to-ground lightning location and storm structure. Mon. Wea. Rev., 119 , 15331556.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., 1993: On the Eddington approximation for radiative transfer in the microwave frequencies. J. Geophys. Res., 98 , 27572765.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15 , 809817.

    • Search Google Scholar
    • Export Citation
  • Lucas, C., E. J. Zipser, and M. A. LeMone, 1994: Vertical velocity in oceanic convection off tropical Australia. J. Atmos. Sci., 51 , 31833193.

    • Search Google Scholar
    • Export Citation
  • Mohr, K. I., and E. J. Zipser, 1996: Defining mesoscale convective systems by the 85-GHz ice scattering signatures. Bull. Amer. Meteor. Soc., 77 , 11791188.

    • Search Google Scholar
    • Export Citation
  • Mohr, K. I., E. R. Toracinta, E. J. Zipser, and R. E. Orville, 1996: A comparison of WSR-88D reflectivities, SSM/I brightness temperatures, and lightning for mesoscale convective systems in Texas. Part II: SSM/I brightness temperatures and lightning. J. Appl. Meteor., 35 , 919931.

    • Search Google Scholar
    • Export Citation
  • Mohr, K. I., J. S. Famiglietti, and E. J. Zipser, 1999: The contribution to tropical rainfall with respect to convective system type, size, and intensity estimated from the 85-GHz ice-scattering signature. J. Appl. Meteor., 38 , 596606.

    • Search Google Scholar
    • Export Citation
  • Mugnai, A., H. J. Cooper, E. A. Smith, and G. J. Tripoli, 1990: Simulation of microwave brightness temperatures of an evolving hailstorm at SSM/I frequencies. Bull. Amer. Meteor. Soc., 71 , 213.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., E. J. Zipser, and D. J. Cecil, 2000: A census of precipitation features in the Tropics using TRMM: Radar, ice scattering, and lightning observations. J. Climate, 13 , 40874106.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., and R. Henderson, 1986: Global distribution of midnight lightning: September 1977 to August 1978. Mon. Wea. Rev., 114 , 26402653.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., and S. A. Rutledge, 2001: Regional variability in tropical convection: Observations from TRMM. J. Climate, 14 , 35663586.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., S. A. Rutledge, and R. E. Orville, 1996: Cloud-to-ground lightning observations from TOGA COARE: Selected results and lightning location algorithms. Mon. Wea. Rev., 124 , 602620.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., R. C. Cifelli, S. A. Rutledge, B. S. Ferrier, and B. F. Smull, 1999: Shipborne dual-Doppler operations during TOGA COARE: Integrated observations of storm kinematics and electrification. Bull. Amer. Meteor. Soc., 80 , 8197.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2d ed. Kluwer Academic, 954 pp.

  • Reynolds, S. E., M. Brook, and M. F. Gourley, 1957: Thunderstorm charge separation. J. Meteor., 14 , 426436.

  • Riehl, H., 1954: Tropical Meteorology. McGraw-Hill, 392 pp.

  • Rutledge, S. A., and D. R. MacGorman, 1988: Cloud-to-ground lightning activity in the 10–11 June 1985 mesoscale convective system observed during the Oklahoma–Kansas PRE-STORM Project. Mon. Wea. Rev., 116 , 13931408.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., E. R. Williams, and T. D. Keenan, 1992: The Down under Doppler and Electricity Experiment (DUNDEE): Overview and preliminary results. Bull. Amer. Meteor. Soc., 73 , 316.

    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., W. D. Keith, and R. P. Mitzeva, 1991: The effect of liquid water on thunderstorm charging. J. Geophys. Res., 96 , 1100711017.

    • Search Google Scholar
    • Export Citation
  • Seo, E-K., 2000: Sensitivity of hydrometeor profiles and satellite brightness temperatures to model microphysics for MCSs over land and ocean: Model comparison using EOF analysis and implications for rain and latent heat retrievals. Ph.D. dissertation, Texas A&M University, 177 pp.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., R. F. Adler, and G. R. North, 1986: On the Tropical Rainfall Measuring Mission (TRMM). Meteor. Atmos. Phys., 60 , 1936.

  • Smith, E. A., A. Mugnai, H. J. Cooper, G. J. Tripoli, and X. Xiang, 1992: Foundations for statistical physical precipitation retrieval from passive microwave satellite measurements. Part I: Brightness temperature properties of a time-dependent cloud radiation model. J. Appl. Meteor., 31 , 506531.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., 1986: A satellite passive 37-GHz scattering-based method for measuring oceanic rain rates. J. Climate Appl. Meteor., 27 , 754766.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., H. M. Goodman, and R. E. Hood, 1989: Precipitation retrieval over land and ocean with the SSM/I: Identification and characteristics of the scattering signal. J. Atmos. Oceanic Technol., 6 , 254273.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., 1978: Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci., 35 , 15361548.

  • Toracinta, E. R., and E. J. Zipser, 2001: Lightning and SSM/I ice scattering mesoscale convective systems in the global Tropics. J. Appl. Meteor., 40 , 9831002.

    • Search Google Scholar
    • Export Citation
  • Toracinta, E. R., K. I. Mohr, E. J. Zipser, and R. E. Orville, 1996: A comparison of WSR-88D reflectivities, SSM/I brightness temperatures, and lightning for mesoscale convective systems in Texas. Part I: Radar reflectivity and lightning. J. Appl. Meteor., 35 , 902918.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., J. Turk, G. L. Stephens, and V. N. Bringi, 1990: Microwave radiative transfer studies using combined multiparameter radar and radiometer measurements during COHMEX. J. Appl. Meteor., 29 , 561585.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., J. Turk, and V. N. Bringi, 1991: Ice water path estimation and characterization using passive microwave radiometery. J. Appl. Meteor., 30 , 14071421.

    • Search Google Scholar
    • Export Citation
  • Wilheit, T. T., 1986: Some comments on passive microwave measurement of rain. Bull. Amer. Meteor. Soc., 67 , 12261232.

  • Wilheit, T. T., and Coauthors. 1982: Microwave radiometric observations near 19.35, 92, and 183 GHz of precipitation in Tropical Storm Cora. J. Appl. Meteor., 21 , 11371145.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., 1989: The tripole structure of thunderstorms. J. Geophys. Res., 94 , 1315113167.

  • Williams, E. R., S. A. Rutledge, S. G. Geotis, N. Renno, E. Rasmussen, and T. Rickenback, 1992: A radar and electrical study of tropical “hot towers.”. J. Atmos. Sci., 49 , 13861395.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., K. Rothkin, D. Stevenson, and D. J. Boccippio, 2000: Global lightning variability caused by changes in thunderstorm flash rate and by changes in number of thunderstorms. J. Appl. Meteor., 39 , 22232230.

    • Search Google Scholar
    • Export Citation
  • Wu, R., and J. A. Weinman, 1984: Microwave radiances from precipitating clouds containing aspherical ice, combined phase, and liquid hydrometeors. J. Geophys. Res., 89 , 71707178.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 1994: Deep cumulonimbus cloud systems in the Tropics with and without lightning. Mon. Wea. Rev., 122 , 18371851.

  • Zipser, E. J., and M. A. LeMone, 1980: Cumulonimbus vertical velocity events in GATE. Part II: Synthesis and model core structure. J. Atmos. Sci., 37 , 24582469.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., and K. R. Lutz, 1994: The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability. Mon. Wea. Rev., 122 , 17511759.

    • Search Google Scholar
    • Export Citation
  • Zolman, J. L., E. J. Zipser, and K. I. Mohr, 2000: A comparison of tropical mesoscale convective systems in El Niño and La Niña. J. Climate, 13 , 33143326.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1077 737 91
PDF Downloads 329 75 10