Flight-Level Thermodynamic Instrument Wetting Errors in Hurricanes. Part I: Observations

Matthew D. Eastin Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Matthew D. Eastin in
Current site
Google Scholar
PubMed
Close
,
Peter G. Black Hurricane Research Division, NOAA/AOML Miami, Florida

Search for other papers by Peter G. Black in
Current site
Google Scholar
PubMed
Close
, and
William M. Gray Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by William M. Gray in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Flight-level thermodynamic errors caused by the wetting of temperature and moisture sensors immersed within the airstream are studied using data from 666 radial legs collected in 31 hurricanes at pressure levels ranging from 850 to 500 mb. Concurrent measurements from a modified Barnes radiometer and a Rosemount 102 immersion thermometer are compared to identify regions, called instrument wetting events (IWE), in which Rosemount temperatures are significantly cooler than radiometer-derived temperatures by a specified amount. A total of 420 IWE are identified in the dataset. Roughly 50% of the radial legs contain at least one instrument wetting event. More than 90% of IWE are associated with updrafts containing cloud water and are confined to scales less than 10 km. IWE are also found to be more frequent in eyewalls and intense hurricanes.

Thermodynamic errors within IWE and convective updrafts and downdrafts are summarized as distributions of average temperature, specific humidity, virtual potential temperature, and equivalent potential temperature error. Distributions are skewed toward larger error values at all levels. Median average errors within IWE indicate that the thermodynamic quantities are typically too low by ∼1°C, ∼1 g kg−1, ∼1.5 K, and ∼5 K, respectively. The largest errors (>90% of the distribution) are nearly twice the median values. Error magnitudes tend to increase with height, but rarely achieve theoretical predictions. In addition, more than 65% of updrafts and 35% of downdrafts are found to contain significant thermodynamic errors. A correction method used in earlier studies was found to be inadequate at removing the majority of errors, but reduced the errors by ∼30%–50% on average.

Corresponding author address: Matthew D. Eastin, Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523. Email: eastin@mpi.atmos.colostate.edu

Abstract

Flight-level thermodynamic errors caused by the wetting of temperature and moisture sensors immersed within the airstream are studied using data from 666 radial legs collected in 31 hurricanes at pressure levels ranging from 850 to 500 mb. Concurrent measurements from a modified Barnes radiometer and a Rosemount 102 immersion thermometer are compared to identify regions, called instrument wetting events (IWE), in which Rosemount temperatures are significantly cooler than radiometer-derived temperatures by a specified amount. A total of 420 IWE are identified in the dataset. Roughly 50% of the radial legs contain at least one instrument wetting event. More than 90% of IWE are associated with updrafts containing cloud water and are confined to scales less than 10 km. IWE are also found to be more frequent in eyewalls and intense hurricanes.

Thermodynamic errors within IWE and convective updrafts and downdrafts are summarized as distributions of average temperature, specific humidity, virtual potential temperature, and equivalent potential temperature error. Distributions are skewed toward larger error values at all levels. Median average errors within IWE indicate that the thermodynamic quantities are typically too low by ∼1°C, ∼1 g kg−1, ∼1.5 K, and ∼5 K, respectively. The largest errors (>90% of the distribution) are nearly twice the median values. Error magnitudes tend to increase with height, but rarely achieve theoretical predictions. In addition, more than 65% of updrafts and 35% of downdrafts are found to contain significant thermodynamic errors. A correction method used in earlier studies was found to be inadequate at removing the majority of errors, but reduced the errors by ∼30%–50% on average.

Corresponding author address: Matthew D. Eastin, Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523. Email: eastin@mpi.atmos.colostate.edu

Save
  • Albrecht, B. A., S. K. Cox, and W. H. Schubert, 1979: Radiometric measurements of in-cloud temperature fluctuations. J. Appl. Meteor., 18 , 10661071.

    • Search Google Scholar
    • Export Citation
  • Barnes, G. M., and G. J. Stossmeister, 1986: The structure and decay of a rainband in Hurricane Irene (1981). Mon. Wea. Rev., 114 , 25902601.

    • Search Google Scholar
    • Export Citation
  • Barnes, G. M., and M. D. Powell, 1995: Evolution of the inflow boundary layer of Hurricane Gilbert (1988). Mon. Wea. Rev., 123 , 23482368.

    • Search Google Scholar
    • Export Citation
  • Barnes, G. M., E. J. Zipser, D. Jorgensen, and F. Marks Jr., 1983: Mesoscale and convective structure of a hurricane rainband. J. Atmos. Sci., 40 , 21272137.

    • Search Google Scholar
    • Export Citation
  • Barnes, G. M., J. F. Gamache, M. A. LeMone, and G. J. Stossmeister, 1991: A convective cell in a hurricane rainband. Mon. Wea. Rev., 119 , 776794.

    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., 1983: An analysis and comparison of five water droplet measuring devices. J. Climate Appl. Meteor., 22 , 891910.

  • Black, M. L., 1993: Comparisons of tropical cyclone intensity with eyewall vertical velocities. Preprints, 20th Conf. on Hurricanes and Tropical Meteorology, San Antonio, TX, Amer. Meteor. Soc., 520–523.

    • Search Google Scholar
    • Export Citation
  • Black, P. G., and G. J. Holland, 1995: The boundary layer of Tropical Cyclone Kerry (1979). Mon. Wea. Rev., 123 , 20072028.

  • Black, R. A., and J. Hallett, 1986: Observations of the distribution of ice in hurricanes. J. Atmos. Sci., 43 , 802822.

  • Black, R. A., H. B. Bluestein, and M. L. Black, 1994: Unusually strong vertical motions in a Caribbean hurricane. Mon. Wea. Rev., 122 , 27222739.

    • Search Google Scholar
    • Export Citation
  • Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108 , 10461053.

  • Colon, J. A., 1964: On the structure of Hurricane Helene (1958). National Hurricane Research Project Rep. 72, U.S. Weather Bureau, 56 pp.

    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., 1999: Instrument wetting errors in hurricanes and a re-examination of inner-core thermodynamics. Dept. Atmospheric Science Paper 683, Colorado State University, Fort Collins, CO, 203 pp. [Available from Dept. Atmospheric Science, Colorado State University, Fort Collins, CO 80523.].

    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., P. G. Black, and W. M. Gray, 2002: Flight-level instrument wetting errors in hurricanes. Part II: Implications. Mon. Wea. Rev., 130 , 842851.

    • Search Google Scholar
    • Export Citation
  • Feind, R. E., A. G. Detweiler, and P. L. Smith, 2000: Cloud liquid water measurements on the Armored T-28: Intercomparisons between Johnson–Williams cloud water meter and CSIRO (King) liquid water probe. J. Atmos. Oceanic Technol., 17 , 16301638.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., 1984: A composite analysis of the core of a mature hurricane. Mon. Wea. Rev., 112 , 24012420.

  • Gentry, R. C., 1964: A study of hurricane rainbands. National Hurricane Research Project Rep. 69, U.S. Weather Bureau, 85 pp.

  • Gray, W. M., 1965: Calculations of cumulus draft velocities in hurricanes from aircraft data. J. Appl. Meteor., 4 , 463474.

  • Gray, W. M., and D. J. Shea, 1973: The hurricane's inner core region. II. Thermal stability and dynamic characteristics. J. Atmos. Sci., 30 , 15651576.

    • Search Google Scholar
    • Export Citation
  • Haman, K. E., A. Makulski, and S. P. Malinowski, 1997: A new ultrafast thermometer for airborne measurements in clouds. J. Atmos. Oceanic Technol., 14 , 217227.

    • Search Google Scholar
    • Export Citation
  • Hawkins, H. F., and D. T. Rubsam, 1968: Hurricane Hilda, 1964. II. Structure and budgets of the hurricane on October 1, 1964. Mon. Wea. Rev., 96 , 617636.

    • Search Google Scholar
    • Export Citation
  • Hawkins, H. F., and S. M. Imbembo, 1976: The structure of a small, intense hurricane—Inez, 1966. Mon. Wea. Rev., 104 , 418442.

  • Hilleary, D. T., and F. E. Christensen, 1957: Instrumentation of National Hurricane Research Project aircraft. National Hurricane Research Project Rep. 11, U.S. Weather Bureau, 71 pp.

    • Search Google Scholar
    • Export Citation
  • Jenkins, G. M., and D. G. Watts, 1968: Spectral Analysis and Its Applications. Holden-Day, 525 pp.

  • Jordan, C. L., 1958a: The thermal structure of the core of tropical cyclones. Geophysica, 6 , 281297.

  • Jordan, C. L., . 1958b: Mean soundings for the West Indies area. J. Meteor., 15 , 9197.

  • Jorgensen, D. P., 1984a: Mesoscale and convective-scale characteristics of mature hurricanes. Part I: General observations by aircraft. J. Atmos. Sci., 41 , 12681285.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., . 1984b: Mesoscale and convective-scale characteristics of mature hurricanes. Part II: Inner core structure of Hurricane Allen (1980). J. Atmos. Sci., 41 , 12871311.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., and M. A. LeMone, 1989: Vertical velocity characteristics of oceanic convection. J. Atmos. Sci., 46 , 621640.

  • Jorgensen, D. P., E. J. Zipser, and M. A. LeMone, 1985: Vertical motions in intense hurricanes. J. Atmos. Sci., 42 , 839856.

  • LaSeur, N. E., and H. F. Hawkins, 1963: An analysis of Hurricane Cleo (1958) based on data from research reconnaissance aircraft. Mon. Wea. Rev., 91 , 694709.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., 1988: The measurement of temperature from an aircraft in cloud. Ph.D. dissertation, University of Wyoming, Laramie, WY, 336 pp.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., and W. A. Cooper, 1990: Performance of some airborne thermometers in clouds. J. Atmos. Oceanic Technol., 7 , 480494.

  • Lawson, R. P., and A. R. Rodi, 1992: A new airborne thermometer for atmospheric and cloud physics research. Part I: Design and preliminary flight tests. J. Atmos. Oceanic Technol., 9 , 556574.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., 1980: On the difficulty of measuring temperature and humidity in clouds: Comments on “Shallow convection on day 261 of GATE: Mesoscale arcs.”. Mon. Wea. Rev., 108 , 17021707.

    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., and W. T. Pennell, 1974: On the measurement of in-cloud and wet-bulb temperatures from an aircraft. Mon. Wea. Rev., 102 , 447454.

    • Search Google Scholar
    • Export Citation
  • Lucas, C. E., E. J. Zipser, and M. A. LeMone, 1994: Vertical velocity in oceanic convection off tropical Australia. J. Atmos. Sci., 51 , 31833193.

    • Search Google Scholar
    • Export Citation
  • Merceret, F. J., 1982: The sensitivity of variables computed from RFC WP-3D flight data to fluctuations in the raw data inputs. NOAA Tech. Memo. ERL RFC-8, 43 pp.

    • Search Google Scholar
    • Export Citation
  • Merceret, F. J., and T. L. Schricker, 1975: A new hot-wire liquid cloud water meter. J. Appl. Meteor., 14 , 319326.

  • Powell, M. D., 1987: Changes in low-level kinematic and thermodynamic structure of Hurricane Alicia (1983) at landfall. Mon. Wea. Rev., 115 , 7599.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., . 1990: Boundary layer structure and dynamics in outer hurricane rainbands. Part II. Downdraft modification and mixed layer recovery. Mon. Wea. Rev., 118 , 918938.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic Publishers, 954 pp.

  • Riehl, H., 1954: Tropical Meteorology. McGraw Hill, 392 pp.

  • Riehl, H., . 1981: Vertical exchange of momentum and energy in the subcloud layer of Australian Hurricane Kerry (1979). Tellus, 33 , 105108.

    • Search Google Scholar
    • Export Citation
  • Riehl, H., and J. Malkus, 1961: Some aspects of Hurricane Daisy (1958). Tellus, 13 , 181213.

  • Rogers, R. F., S. Aberson, J. Kaplan, and S. Goldenberg, 2002: A pronounced upper-tropospheric warm anomaly encountered by the NOAA G-IV aircraft in the vicinity of deep convection. Mon. Wea. Rev., 130 , 180187.

    • Search Google Scholar
    • Export Citation
  • Ryan, B. F., G. M. Barnes, and E. J. Zipser, 1992: A wide rainband in a developing tropical cyclone. Mon. Wea. Rev., 120 , 431447.

  • Samsury, C. E., and E. J. Zipser, 1995: Secondary wind maxima in hurricanes: Airflow and relationship to rainbands. Mon. Wea. Rev., 123 , 35023517.

    • Search Google Scholar
    • Export Citation
  • Shea, D. J., and W. M. Gray, 1973: The hurricane's inner core region. I. Symmetric and asymmetric structure. J. Atmos. Sci., 30 , 15441564.

    • Search Google Scholar
    • Export Citation
  • Sheets, R. C., 1967a: On the structure of Hurricane Janice (1958). NOAA Tech. Memo. ERL NHRL-76, 38 pp.

  • Sheets, R. C., . 1967b: On the structure of Hurricane Ella (1962). NOAA Tech. Memo. ERL NHRL-77, 33 pp.

  • Sheets, R. C., . 1968: The structure of Hurricane Dora (1964). NOAA Tech. Memo. ERL NHRL-83, 64 pp.

  • Simpson, R. H., 1952: Exploring eye of Typhoon “Marge,” 1951. Bull. Amer. Meteor. Soc., 33 , 286298.

  • Spyers-Duran, P. A., 1968: Comparative measurements of cloud liquid water using heated wire and cloud replicating devices. J. Appl. Meteor., 7 , 674678.

    • Search Google Scholar
    • Export Citation
  • Wei, D., A. M. Blyth, and D. J. Raymond, 1998: Buoyancy of convective clouds in TOGA COARE. J. Atmos. Sci., 55 , 33813391.

  • Willoughby, H. E., and M. B. Chelmow, 1982: Objective determination of hurricane tracks from aircraft observations. Mon. Wea. Rev., 110 , 12981305.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., J. A. Clos, and M. G. Shoribah, 1982: Concentric eyewalls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39 , 395411.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., R. J. Meitin, and M. A. LeMone, 1981: Mesoscale motion fields associated with a slowly moving GATE convective band. J. Atmos. Sci., 38 , 17251750.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 757 574 30
PDF Downloads 174 49 10