Flight-Level Thermodynamic Instrument Wetting Errors in Hurricanes. Part II: Implications

Matthew D. Eastin Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Matthew D. Eastin in
Current site
Google Scholar
PubMed
Close
,
Peter G. Black Hurricane Research Division, NOAA/AOML, Miami, Florida

Search for other papers by Peter G. Black in
Current site
Google Scholar
PubMed
Close
, and
William M. Gray Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by William M. Gray in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The implications of flight-level instrument wetting error removal upon the mean thermodynamic structure across the eyewall, buoyancy of rainband vertical motions, and vertical energy fluxes near the top of the inflow layer are studied. Thermodynamic quantities across the mean eyewall are found to increase at all levels. As a result, maximum radial gradients of each quantity are shifted from the center of the eyewall cloud toward the outer edge. The increase in equivalent potential temperature lifts eyewall values to comparable magnitudes observed in the eye. The mean virtual potential temperature deviation of rainband updrafts increases from slightly negative to slightly positive. This increase and shift in sign are more pronounced in stronger updrafts. The mean deviation in rainband downdrafts decreases slightly toward neutral conditions. Vertical sensible heat fluxes near the top of the inflow layer are found to shift from downward to upward. Upward latent heat fluxes increase. Implications of these results upon hurricane structure and evolution are discussed.

Corresponding author address: Matthew D. Eastin, Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523. Email: eastin@mpi.atmos.colostate.edu

Abstract

The implications of flight-level instrument wetting error removal upon the mean thermodynamic structure across the eyewall, buoyancy of rainband vertical motions, and vertical energy fluxes near the top of the inflow layer are studied. Thermodynamic quantities across the mean eyewall are found to increase at all levels. As a result, maximum radial gradients of each quantity are shifted from the center of the eyewall cloud toward the outer edge. The increase in equivalent potential temperature lifts eyewall values to comparable magnitudes observed in the eye. The mean virtual potential temperature deviation of rainband updrafts increases from slightly negative to slightly positive. This increase and shift in sign are more pronounced in stronger updrafts. The mean deviation in rainband downdrafts decreases slightly toward neutral conditions. Vertical sensible heat fluxes near the top of the inflow layer are found to shift from downward to upward. Upward latent heat fluxes increase. Implications of these results upon hurricane structure and evolution are discussed.

Corresponding author address: Matthew D. Eastin, Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523. Email: eastin@mpi.atmos.colostate.edu

Save
  • Ackerman, B., 1963: The distribution of liquid water in hurricanes. National Hurricane Research Project Report 62, U.S. Weather Bureau, 41 pp.

    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., and S. W. Chang, 1978: Response of the hurricane boundary layer to changes in sea surface temperature in a numerical model. J. Atmos. Sci., 35 , 1240–1255.

    • Search Google Scholar
    • Export Citation
  • Barnes, G. M., E. J. Zipser, D. Jorgensen, and F. Marks Jr., 1983: Mesoscale and convective structure of a hurricane rainband. J. Atmos. Sci., 40 , 2127–2137.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and J. S. Simpson, 1987: Thermodynamic budget diagrams for the hurricane subcloud layer. J. Atmos. Sci., 44 , 842–849.

    • Search Google Scholar
    • Export Citation
  • Black, P. G., and G. J. Holland, 1995: The boundary layer of Tropical Cyclone Kerry (1979). Mon. Wea. Rev., 123 , 2007–2028.

  • Black, R. A., and J. Hallett, 1986: Observations of the distribution of ice in hurricanes. J. Atmos. Sci., 43 , 802–822.

  • Bogner, P. B., G. M. Barnes, and J. L. Franklin, 2000: Conditional instability and shear for six hurricanes over the Atlantic Ocean. Wea. Forecasting, 15 , 192–207.

    • Search Google Scholar
    • Export Citation
  • Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108 , 1046–1053.

  • Byers, H. R., 1944: General Meteorology. McGraw-Hill, 645 pp.

  • Cione, J. J., P. G. Black, and S. H. Houston, 2000: Surface observations within the hurricane environment. Mon. Wea. Rev., 128 , 1550–1561.

    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., 1999: Instrument wetting errors in hurricanes and a re-examination of inner-core thermodynamics. Dept. Atmospheric Science Paper 683, Colorado State University, Fort Collins, CO, 203 pp. [Available from Dept. Atmospheric Science, Colorado State University, Fort Collins, CO 80523.].

    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., P. G. Black, and W. M. Gray, 2002: Flight-level instrument wetting errors in hurricanes. Part I: Observations. Mon. Wea. Rev., 130 , 825–841.

    • Search Google Scholar
    • Export Citation
  • Elsberry, R. L., G. J. Holland, H. Garrish, M. DeMaria, and C. P. Gaurd, 1992: Is there any hope for tropical cyclone intensity change prediction?—A panel discussion. Bull. Amer. Meteor. Soc., 73 , 264–275.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43 , 585–604.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., 1977: The structure and energetics of the tropical cyclone. I. Storm structure. Mon. Wea. Rev., 105 , 1119–1135.

  • Frank, W. M., . 1984: A composite analysis of the core of a mature hurricane. Mon. Wea. Rev., 112 , 2401–2420.

  • Gray, W. M., 1965: Calculations of cumulus draft velocities in hurricanes from aircraft data. J. Appl. Meteor., 4 , 463–474.

  • Gray, W. M., . 1997: The tropical cyclones Maximum Potential Intensity (MPI). Preprints, 22d Conf. on Hurricanes and Tropical Meteorology, Fort Collins, CO, Amer. Meteor. Soc., 288–289.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., and D. J. Shea, 1973: The hurricane's inner core region. II. Thermal stability and dynamic characteristics. J. Atmos. Sci., 30 , 1565–1576.

    • Search Google Scholar
    • Export Citation
  • Hawkins, H. F., and D. T. Rubsam, 1968: Hurricane Hilda, 1964. II. Structure and budgets of the hurricane on October 1, 1964. Mon. Wea. Rev., 96 , 617–636.

    • Search Google Scholar
    • Export Citation
  • Hawkins, H. F., and S. M. Imbembo, 1976: The structure of a small, intense hurricane—Inez, 1966. Mon. Wea. Rev., 104 , 418–442.

    • Search Google Scholar
    • Export Citation
  • Igau, R. C., M. A. LeMone, and D. Wei, 1999: Updraft and downdraft cores in TOGA COARE: Why so many buoyant downdraft cores? J. Atmos. Sci., 56 , 2232–2245.

    • Search Google Scholar
    • Export Citation
  • Jordan, C. L., 1961: Marked changes in characteristics of the eye of intense typhoons between the deepening and filling stages. J. Meteor., 18 , 779–789.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., 1984a: Mesoscale and convective-scale characteristics of mature hurricanes. Part I: General observations by aircraft. J. Atmos. Sci., 41 , 1268–1285.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., . 1984b: Mesoscale and convective-scale characteristics of mature hurricanes. Part II: Inner core structure of Hurricane Allen (1980). J. Atmos. Sci., 41 , 1287–1311.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., and M. A. LeMone, 1989: Vertical velocity characteristics of oceanic convection. J. Atmos. Sci., 46 , 621–640.

  • Jorgensen, D. P., E. J. Zipser, and M. A. LeMone, 1985: Vertical motions in intense hurricanes. J. Atmos. Sci., 42 , 839–856.

  • Kossin, J. P., and M. D. Eastin, 2001: Two distinct regimes in the kinematic and thermodynamic structure of the hurricane eye and eyewall. J. Atmos. Sci., 58 , 1079–1090.

    • Search Google Scholar
    • Export Citation
  • Kuo, H-L., 1959: Dynamics of convective vortices and eye formation. The Atmosphere and Sea in Motion, B. Bolin, Ed., Rockefeller Institute Press, 413–424.

    • Search Google Scholar
    • Export Citation
  • Lucas, C., E. J. Zipser, and M. A. LeMone, 1994: Vertical velocity in oceanic convection off tropical Australia. J. Atmos. Sci., 51 , 3183–3193.

    • Search Google Scholar
    • Export Citation
  • Malkus, J. S., 1958: On the structure and maintenance of the mature hurricane eye. J. Meteor., 15 , 337–349.

  • Malkus, J. S., and H. Riehl, 1960: On the dynamics and energy transformations in steady-state hurricanes. Tellus, 12 , 1–20.

  • Moss, M. S., 1978: Low-layer features of two limited-area hurricane regimes. NOAA Tech. Rep. ERL NHEML-1, 47 pp.

  • Ooyama, K. V., 1982: Conceptual evolution of the theory and modeling of the tropical cyclone. J. Meteor. Soc. Japan, 60 , 369–380.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., 1990: Boundary layer structure and dynamics in outer hurricane rainbands. Part II: Downdraft modification and mixed layer recovery. Mon. Wea. Rev., 118 , 918–938.

    • Search Google Scholar
    • Export Citation
  • Riehl, H., 1981: Vertical exchange of momentum and energy in the subcloud layer of Australian Hurricane Kerry (1979). Tellus, 33 , 105–108.

    • Search Google Scholar
    • Export Citation
  • Shea, D. J., and W. M. Gray, 1973: The hurricane's inner core region. I. Symmetric and asymmetric structure. J. Atmos. Sci., 30 , 1544–1564.

    • Search Google Scholar
    • Export Citation
  • Wei, D., A. M. Blyth, and D. J. Raymond, 1998: Buoyancy of convective clouds in TOGA COARE. J. Atmos. Sci., 55 , 3381–3391.

  • Willoughby, H. E., 1998: Tropical cyclone eye thermodynamics. Mon. Wea. Rev., 126 , 3053–3067.

  • Zhang, D-L., Y. Liu, and M. K. Yau, 2000: A multiscale numerical study of Hurricane Andrew (1992). Part III: Dynamically induced vertical motion. Mon. Wea. Rev., 128 , 3772–3788.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., R. J. Meitin, and M. A. LeMone, 1981: Mesoscale motion fields associated with a slowly moving GATE convective band. J. Atmos. Sci., 38 , 1725–1750.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 880 785 35
PDF Downloads 85 33 4