A Multiscale Anelastic Model for Meteorological Research

Wojciech W. Grabowski National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Wojciech W. Grabowski in
Current site
Google Scholar
PubMed
Close
and
Piotr K. Smolarkiewicz National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Piotr K. Smolarkiewicz in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The recently reported nonhydrostatic anelastic numerical model for simulating a range of atmospheric processes on scales from micro to planetary is extended to moist processes. A theoretical formulation of moist precipitating thermodynamics follows the standard cloud models; that is, it explicitly treats the formation of cloud condensate and the subsequent development and fallout of precipitation. In order to accommodate a broad range of temporal scales, the customized numerical algorithm merges the explicit scheme for the thermodynamics with the semi-implicit scheme for the dynamics, where the latter is essential for the computational efficiency of the global model. The coarse spatial resolutions used in present global models result in a disparity between the timescales of the fluid flow and the much shorter timescales associated with phase-change processes and precipitation fallout. To overcome this difficulty the approach based on the method of averages is employed, where fast processes are evaluated with adequately small time steps (and lower accuracy) over the large time step of the model, to provide an accurate approximation to the large time step integral of fast forcings in the stiff system. This approach allows for stable integrations when cloud processes are poorly resolved and it converges to the formulation standard in cloud models as the resolution increases. The theoretical developments are tested in simulations of small-, meso-, and planetary-scale idealized moist atmospheric flows. Results from the small-scale simulations demonstrate that the proposed approach compares favorably with traditional explicit techniques used in cloud models. Planetary simulations, on the other hand, illustrate an ability to capture moist processes in low-resolution large-scale flows.

Corresponding author address: Dr. Wojciech W. Grabowski, NCAR, P.O. Box 3000, Boulder, CO 80307-3000. Email: grabow@ncar.ucar.edu

Abstract

The recently reported nonhydrostatic anelastic numerical model for simulating a range of atmospheric processes on scales from micro to planetary is extended to moist processes. A theoretical formulation of moist precipitating thermodynamics follows the standard cloud models; that is, it explicitly treats the formation of cloud condensate and the subsequent development and fallout of precipitation. In order to accommodate a broad range of temporal scales, the customized numerical algorithm merges the explicit scheme for the thermodynamics with the semi-implicit scheme for the dynamics, where the latter is essential for the computational efficiency of the global model. The coarse spatial resolutions used in present global models result in a disparity between the timescales of the fluid flow and the much shorter timescales associated with phase-change processes and precipitation fallout. To overcome this difficulty the approach based on the method of averages is employed, where fast processes are evaluated with adequately small time steps (and lower accuracy) over the large time step of the model, to provide an accurate approximation to the large time step integral of fast forcings in the stiff system. This approach allows for stable integrations when cloud processes are poorly resolved and it converges to the formulation standard in cloud models as the resolution increases. The theoretical developments are tested in simulations of small-, meso-, and planetary-scale idealized moist atmospheric flows. Results from the small-scale simulations demonstrate that the proposed approach compares favorably with traditional explicit techniques used in cloud models. Planetary simulations, on the other hand, illustrate an ability to capture moist processes in low-resolution large-scale flows.

Corresponding author address: Dr. Wojciech W. Grabowski, NCAR, P.O. Box 3000, Boulder, CO 80307-3000. Email: grabow@ncar.ucar.edu

Save
  • Brasseur, G. P., D. A. Hauglustaine, S. Walters, P. J. Rasch, J-F. Muller, C. Granier, and X. X. Tie, 1998: MOZZART, a global chemical transport model for ozone and related chemical tracers. 1. Model description. J. Geophys. Res., 103 , 28265–28289.

    • Search Google Scholar
    • Export Citation
  • Chahine, M. T., 1992: The hydrological cycle and its influence on climate. Nature, 359 , 373–380.

  • Clark, T. L., 1979: Numerical simulations with a three-dimensional cloud model: Lateral boundary condition experiments and multicellular severe storm simulations. J. Atmos. Sci., 36 , 2192–2215.

    • Search Google Scholar
    • Export Citation
  • Crowe, C. T., M. Sommerfeld, and Y. Tsuji, 1998: Multiphase Flows With Droplets And Particles. CRC Press, 471 pp.

  • Cullen, M. J. P., T. Davies, M. H. Mawson, J. A. James, and S. Coulter, 1997: An overview of numerical methods for the next generation UK NWP and climate model,. Atmos.–Ocean Special, 35 , 425–444.

    • Search Google Scholar
    • Export Citation
  • Cullen, M. J. P., D. Salmond, and P. K. Smolarkiewicz, 2000: Key numerical issues for future development of the ECMWF model. Proc. ECMWF Workshop on Developments in Numerical Methods for Very High Resolution Global Models, Reading, United Kingdom, ECMWF, 183–206.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Fowler, L. D., D. A. Randall, and S. A. Rutledge, 1996: Liquid and ice cloud microphysics in the CSU General Circulation Model. Part I: Model description and simulated microphysical processes. J. Climate, 9 , 489–529.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 1998: Toward cloud resolving modeling of large-scale tropical circulations: A simple cloud microphysics parameterization. J. Atmos. Sci., 55 , 3283–3298.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., . 1999: A parameterization of cloud microphysics for long-term cloud-resolving modeling of tropical convection. Atmos. Res., 52 , 17–41.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and P. K. Smolarkiewicz, 1990: Monotone finite-difference approximations to the advection&ndashcondensation problem. Mon. Wea. Rev., 118 , 2082–2097.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and T. L. Clark, 1991: Cloud–environment interface instability: Rising thermal calculations in two spatial dimensions. J. Atmos. Sci., 48 , 527–546.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and T. L. Clark, . 1993a: Cloud-environment interface instability. Part II: Extension to three spatial dimensions. J. Atmos. Sci., 50 , 555–573.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and T. L. Clark, . 1993b: Cloud-environment interface instability. Part III: Direct influence of environmental shear. J. Atmos. Sci., 50 , 3821–3828.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and P. K. Smolarkiewicz, 1996: On two-time-level semi-Lagrangian modeling of precipitating clouds. Mon. Wea. Rev., 124 , 487–497.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., X. Wu, and M. W. Moncrieff, 1996: Cloud-resolving modeling of tropical cloud systems during Phase III of GATE. Part I: Two-dimensional experiments. J. Atmos. Sci., 53 , 3684–3709.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., X. Wu, M. W. Moncrieff, and W. D. Hall, 1998: Cloud-resolving modeling of tropical cloud systems during Phase III of GATE. Part II: Effects of resolution and the third spatial dimension. J. Atmos. Sci., 55 , 3264–3282.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., J. J. Morcrette, C. Jakob, A. C. M. Beljaars, and T. Stockdale, 2000: Revision of convection, radiation and cloud schemes in the ECMWF Integrated Forecasting System. Quart. J. Roy. Meteor. Soc., 126 , 1686–1710.

    • Search Google Scholar
    • Export Citation
  • Grose, W. L., and B. J. Hoskins, 1979: On the influence of orography on large-scale atmospheric flow. J. Atmos. Sci., 36 , 223–234.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and M. J. Suarez, 1994: A proposal for intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75 , 1825–1830.

    • Search Google Scholar
    • Export Citation
  • Héreil, P., and R. Laprise, 1996: Sensitivity of internal gravity wave solutions to the timestep of a semi-implicit semi-Lagrangian nonhydrostatic model. Mon. Wea. Rev., 124 , 972–999.

    • Search Google Scholar
    • Export Citation
  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulations. Meteor. Monogr., No. 32, Amer. Meteor. Soc., 84 pp.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35 , 1070–1096.

    • Search Google Scholar
    • Export Citation
  • Koenig, L. R., and F. W. Murray, 1976: Ice-bearing cumulus cloud evolution: Numerical simulation and general comparison against observations. J. Appl. Meteor., 15 , 747–762.

    • Search Google Scholar
    • Export Citation
  • Lipps, F. B., and R. S. Hemler, 1982: A scale analysis of deep moist convection and some related numerical calculations. J. Atmos. Sci., 39 , 2192–2210.

    • Search Google Scholar
    • Export Citation
  • Liu, C., M. W. Moncrieff, and W. W. Grabowski, 2001: Hierarchical modeling of tropical convective systems using resolved and parameterized approaches. Quart. J. Roy. Meteor. Soc., 127 , 493–515.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102 ((C3),) 5753–5766.

    • Search Google Scholar
    • Export Citation
  • Miller, M. J., and R. P. Pearce, 1974: A three-dimensional primitive equation model of cumulonimbus convection. Quart. J. Roy. Meteor. Soc., 100 , 133–154.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., S. K. Krueger, D. Gregory, J-L. Redelsperger, and W-K. Tao, 1997: GEWEX Cloud System Study (GCSS) Working Group 4: Precipitating convective cloud systems. Bull. Amer. Meteor. Soc., 78 , 831–845.

    • Search Google Scholar
    • Export Citation
  • Nadiga, B. T., M. W. Hecht, L. G. Margolin, and P. K. Smolarkiewicz, 1997: On simulating flows with multiple time scales using a method of averages. Theor. Comp. Fluid Dyn., 9 , 281–292.

    • Search Google Scholar
    • Export Citation
  • Reisner, J. M., S. Wynne, L. G. Margolin, and R. R. Linn, 2000: Coupled atmospheric–fire modeling employing the method of averages. Mon. Wea. Rev., 128 , 3683–3691.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and P. V. Hobbs, 1984: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci., 41 , 2949–2972.

    • Search Google Scholar
    • Export Citation
  • Schlesinger, R. E., 1978: A three-dimensional numerical model of an isolated thunderstorm: Part I. Comparative experiments for variable ambient wind shear. J. Atmos. Sci., 35 , 690–713.

    • Search Google Scholar
    • Export Citation
  • Semazzi, F. H. M., J-H. Qian, and J. S. Scroggs, 1995: A global nonhydrostatic semi-Lagrangian, atmospheric model without orography. Mon. Wea. Rev., 123 , 2534–2550.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., and J. A. Pudykiewicz, 1992: A class of semi-Lagrangian approximations for fluids. J. Atmos. Sci., 49 , 2082–2096.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., and L. G. Margolin, 1993: On forward-in-time differencing for fluids: Extension to a curvilinear framework,. Mon. Wea. Rev., 121 , 1847–1859.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., and L. G. Margolin, . 1997: On forward-in-time differencing for fluids: An Eulerian/semi-Lagrangian nonhydrostatic model for stratified flows. Atmos.–Ocean Special, 35 , 127–152.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., and L. G. Margolin, . 1998: MPDATA: A finite-difference solver for geophysical flows. J. Comput. Phys., 140 , 459–480.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., and J. M. Prusa, 2001: VLES modeling of geophysical fluids with nonoscillatory forward-in-time schemes. Proc. ECCOMAS Computational Fluid Dynamics Conf., Swansea, Wales, United Kingdom, 24 pp.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., V. GrubiÅ¡ić, L. G. Margolin, and A. A. Wyszogrodzki, 1999: Forward-in-time differencing for fluids: Nonhydrostatic modeling of fluid motions on a sphere. Proc. 1998 Seminar on Recent Developments in Numerical Methods for Atmospheric Modeling, Reading, United Kingdom, ECMWF, 21–43.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., L. G. Margolin, and A. Wyszogrodzki, 2001: A class of nonhydrostatic global models. J. Atmos. Sci., 58 , 349–364.

    • Search Google Scholar
    • Export Citation
  • Swann, H., 1998: Sensitivity to the representation of precipitating ice in CRM simulations of deep convection. Atmos. Res., 48 , 415–435.

    • Search Google Scholar
    • Export Citation
  • Takacs, L. L., 1988: Effects of using a posteriori methods for the conservation of integral invariants. Mon. Wea. Rev., 116 , 525–545.

    • Search Google Scholar
    • Export Citation
  • Tremback, C. J., J. Powell, W. R. Cotton, and R. A. Pielke, 1987: The forward-in-time upstream advection scheme: Extension to higher orders. Mon. Wea. Rev., 115 , 540–555.

    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., J. B. Drake, J. J. Hack, R. Jakob, and P. N. Swarztrauber, 1992: A standard test set for numerical approximations to the shallow water equations on the sphere. J. Comput. Phys., 102 , 211–224.

    • Search Google Scholar
    • Export Citation
  • Wu, X., W. W. Grabowski, and M. W. Moncrieff, 1998: Long-term behavior of cloud systems in TOGA COARE and their interactions with radiative and surface processes. Part I: Two-dimensional modeling study. J. Atmos. Sci, 55 , 2693–2714.

    • Search Google Scholar
    • Export Citation
  • Wu, X., W. D. Hall, W. W. Grabowski, M. W. Moncrieff, W. D. Collins, and J. T. Kiehl, 1999: Long-term behavior of cloud systems in TOGA COARE and their interactions with radiative and surface processes. Part II: Effects of cloud microphysics on cloud–radiation interaction. J. Atmos. Sci., 56 , 3177–3195.

    • Search Google Scholar
    • Export Citation
  • Yeh, K-S., J. Côté, S. Gravel, A. Méthot, A. Patoine, M. Roch, and A. Staniforth, 2002: The CMC–MRB global environmental multiscale (GEM) model. Part III: Nonhydrostatic formulation. Mon. Wea. Rev., 130 , 339–356.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1266 806 69
PDF Downloads 306 65 3