The BMRC Coupled General Circulation Model ENSO Forecast System

Guomin Wang Bureau of Meteorology Research Centre, Melbourne, Victoria, Australia

Search for other papers by Guomin Wang in
Current site
Google Scholar
PubMed
Close
,
Richard Kleeman Bureau of Meteorology Research Centre, Melbourne, Victoria, Australia

Search for other papers by Richard Kleeman in
Current site
Google Scholar
PubMed
Close
,
Neville Smith Bureau of Meteorology Research Centre, Melbourne, Victoria, Australia

Search for other papers by Neville Smith in
Current site
Google Scholar
PubMed
Close
, and
Faina Tseitkin Bureau of Meteorology Research Centre, Melbourne, Victoria, Australia

Search for other papers by Faina Tseitkin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An El Niño–Southern Oscillation (ENSO) prediction system with a coupled general circulation model and an ocean data assimilation scheme has been developed at the Australian Bureau of Meteorology Research Centre (BMRC). The coupled model consists of an R21L9 version of the BMRC climate model and a global version of the Geophysical Fluid Dynamics Laboratory modular ocean general circulation model with resolution focused in the tropical region and 25 vertical levels. A univariate statistical interpolation method, with 10-day data ingestion windows, is used to assimilate ocean temperature data and initialize the coupled model. The coupling procedure does not use any flux corrections. Hindcasts have been carried out for the period 1981–95 for each season (60 in all), for up to a lead time of 12 months. This paper will describe these initial experiments and show that the skill of sea surface temperature (SST) hindcasts in the tropical Pacific is comparable to other published coupled models. The skill of the model is strongest in the central Pacific. SST skill tends to be lower during the earlier 1990s than during 1980s in the eastern Pacific but not in the central Pacific. Since the ENSO SST anomaly in the central Pacific is the most important forcing of regional and global climate anomalies, the high SST prediction skill and its insensitivity over the hindcast period in this region in this model give grounds for optimism in the use of coupled general circulation models.

Corresponding author address: Dr. Guomin Wang, BMRC, GPO Box 1289K, Melbourne, VIC 3001, Australia. Email: g.wang@bom.gov.au

Abstract

An El Niño–Southern Oscillation (ENSO) prediction system with a coupled general circulation model and an ocean data assimilation scheme has been developed at the Australian Bureau of Meteorology Research Centre (BMRC). The coupled model consists of an R21L9 version of the BMRC climate model and a global version of the Geophysical Fluid Dynamics Laboratory modular ocean general circulation model with resolution focused in the tropical region and 25 vertical levels. A univariate statistical interpolation method, with 10-day data ingestion windows, is used to assimilate ocean temperature data and initialize the coupled model. The coupling procedure does not use any flux corrections. Hindcasts have been carried out for the period 1981–95 for each season (60 in all), for up to a lead time of 12 months. This paper will describe these initial experiments and show that the skill of sea surface temperature (SST) hindcasts in the tropical Pacific is comparable to other published coupled models. The skill of the model is strongest in the central Pacific. SST skill tends to be lower during the earlier 1990s than during 1980s in the eastern Pacific but not in the central Pacific. Since the ENSO SST anomaly in the central Pacific is the most important forcing of regional and global climate anomalies, the high SST prediction skill and its insensitivity over the hindcast period in this region in this model give grounds for optimism in the use of coupled general circulation models.

Corresponding author address: Dr. Guomin Wang, BMRC, GPO Box 1289K, Melbourne, VIC 3001, Australia. Email: g.wang@bom.gov.au

Save
  • Balmaseda, M. A., M. K. Davey, and D. L. T. Anderson, 1995: Decadal and seasonal dependence of ENSO prediction skill. J. Climate, 8 , 27052715.

    • Search Google Scholar
    • Export Citation
  • Barsugli, J. J., J. S. Whitaker, A. F. Loughe, P. D. Sardeshmukh, and Z. Toth, 1999: The effect of the 1997/98 El Niño on individual large-scale weather events. Bull. Amer. Meteor. Soc., 80 , 13991412.

    • Search Google Scholar
    • Export Citation
  • Chen, D., L. M. Rothstein, and A. J. Busalacchi, 1994: A hybrid vertical mixing scheme and its application to tropical ocean models. J. Phys. Oceanogr., 24 , 21562179.

    • Search Google Scholar
    • Export Citation
  • Chen, D., S. E. Zebiak, A. J. Busalacchi, and M. A. Cane, 1995: An improved procedure for El Niño forecasting: Implications for predictability. Science, 269 , 16991702.

    • Search Google Scholar
    • Export Citation
  • Colman, R. A., and B. J. McAvaney, 1992: Modelling of polar regions for climate change experiments. Modelling Weather and Climate: The Third BMRC Modelling Workshop, Bureau of Meteorology Research Centre Res. Rep. 33, 390–406.

    • Search Google Scholar
    • Export Citation
  • Fasullo, J., and P. J. Webster, 1999: Warm pool SST variability in relation to the surface energy balance. J. Climate, 12 , 12921305.

  • Frederiksen, C. S., D. P. Rowell, R. C. Balgovind, and C. K. Folland, 1999: Multidecadal simulations of Australian rainfall variability: The role of SSTs. J. Climate, 12 , 357379.

    • Search Google Scholar
    • Export Citation
  • Gates, W. L., and A. B. Nelson, 1975: A new (revised) tabulation of the Scripps topography on a 1° global grid. Part I: Terrain heights. Rand Corporation Tech. Rep. R-1276-1-ARPA, 132 pp.

    • Search Google Scholar
    • Export Citation
  • Goldenberg, S. B., and J. J. O'Brien, 1981: Time and space variability of tropical Pacific wind stress. Mon. Wea. Rev., 109 , 11901207.

    • Search Google Scholar
    • Export Citation
  • Hart, T. L., M. J. Gay, and W. Bourke, 1988: Sensitivity studies with the physical parameterizations in the BMRC global atmospheric spectral model. Aust. Meteor. Mag., 36 , 4760.

    • Search Google Scholar
    • Export Citation
  • Hart, T. L., W. Bourke, B. J. McAvaney, and B. W. Forgan, 1990: Atmospheric general circulation simulations with the BMRC global spectral model: The impact of revised physical parameterizations. J. Climate, 3 , 436459.

    • Search Google Scholar
    • Export Citation
  • Haskins, R. D., T. P. Barnett, M. M. Tyree, and E. Roeckner, 1995: Comparison of cloud fields from atmospheric general circulation model, in situ and satellite measurements. J. Geophys. Res., 100 , 13671378.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., and A. Kumar, 1997: Origins of extreme climate states during the 1982–83 ENSO winter. J. Climate, 10 , 28592870.

  • Hoerling, M. P., A. Kumar, and M. Zhong, 1997: El Niño, La Niña, and the nonlinearity of their teleconnections. J. Climate, 10 , 17691786.

    • Search Google Scholar
    • Export Citation
  • Horel, J. D., and J. M. Wallace, 1981: Planetary scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109 , 813829.

    • Search Google Scholar
    • Export Citation
  • Ji, M., and A. Leetmaa, 1997: Impact of data assimilation on ocean initialization and El Niño prediction. Mon. Wea. Rev., 125 , 742753.

    • Search Google Scholar
    • Export Citation
  • Ji, M., A. Leetmaa, and V. E. Kousky, 1996: Coupled model forecasts of ENSO during the 1980s and 1990s at the National Meteorological Center. J. Climate, 9 , 31053120.

    • Search Google Scholar
    • Export Citation
  • Ji, M., D. W. Behringer, and A. Leetmaa, 1998: An improved coupled model for ENSO prediction and implications for ocean initialization. Part II: The coupled model. Mon. Wea. Rev., 126 , 10221034.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors. 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kirtman, B. P., and P. S. Schopf, 1998: Decadal variability in ENSO predictability and prediction. J. Climate, 11 , 28042822.

  • Kirtman, B. P., J. Shukla, B. Huang, Z. Zhu, and E. K. Schneider, 1997: Multiseasonal predictions with a coupled tropical ocean–global atmosphere system. Mon. Wea. Rev., 125 , 789808.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., J. Shukla, M. Balmaseda, N. Graham, C. Penland, Y. Xue, and S. Zebiak, 2000: Current status of ENSO forecast skill. A Report to the Climate Variability and Predictability (CLIVAR) Numerical Experimentation Group (NEG), CLIVAR Working Group on Seasonal to Interannual Prediction. [Available online at http://www.clivar.org/publications/wg_reports/wgsip/nino3/report.htm.].

    • Search Google Scholar
    • Export Citation
  • Kleeman, R., and A. M. Moore, 1999: A new method for determining the reliability of dynamical ENSO predictions. Mon. Wea. Rev., 127 , 694705.

    • Search Google Scholar
    • Export Citation
  • Kleeman, R., A. M. Moore, and N. R. Smith, 1995: Assimilation of subsurface thermal data into an intermediate tropical coupled ocean–atmosphere model. Mon. Wea. Rev., 123 , 31033113.

    • Search Google Scholar
    • Export Citation
  • Lacis, A. A., and J. F. Hansen, 1974: A parameterization for the absorption of solar radiation in the earth's atmosphere. J. Atmos. Sci., 31 , 118133.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. A. Knaff, 2000: How much skill was there in forecasting the very strong 1997–98 El Niño? Bull. Amer. Meteor. Soc., 81 , 21072120.

    • Search Google Scholar
    • Export Citation
  • Latif, M., A. Sterl, E. Maier-Reimer, and M. M. Junge, 1993: Structure and predictability of the El Niño/Southern Oscillation phenomenon in a coupled ocean–atmosphere general circulation model. J. Climate, 6 , 700708.

    • Search Google Scholar
    • Export Citation
  • Latif, M., R. Kleeman, and C. Eckert, 1997: Greenhouse warming, decadal variability, or El Niño? An attempt to understand the anomalous 1990s. J. Climate, 10 , 22212239.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and Coauthors. 1998: A review of the predictability and prediction of ENSO. J. Geophys. Res., 103 , 1437514393.

  • Levitus, S., and T. P. Boyer, 1994: Temperature. Vol. 4,. World Ocean Atlas 1994, NOAA Atlas NESDIS 4, 117 pp.

  • Livezey, R. E., M. Masutani, A. Leetmaa, H. Rui, M. Ji, and A. Kumar, 1997: Teleconnective response of the Pacific–North American region atmosphere to large central equatorial Pacific SST anomalies. J. Climate, 10 , 17871820.

    • Search Google Scholar
    • Export Citation
  • Lorenc, A., 1986: Analysis methods for numerical weather prediction. Quart. J. Roy. Meteor. Soc., 112 , 11771194.

  • Louis, J-F., M. Tiedtke, and J-F. Geleyn, 1981: A short history of the PBL parameterisation at ECMWF. Proc. ECMWF Workshop on Planetary Boundary Layer Parameterisation, Reading, United Kingdom, European Centre for Medium-Range Weather Forecasts, 59–80.

    • Search Google Scholar
    • Export Citation
  • McAvaney, B. J., and R. A. Colman, 1993: The AMIP experiment: The BMRC AGCM configuration. Bureau of Meteorology Research Centre Res. Rep. 38, 43 pp.

    • Search Google Scholar
    • Export Citation
  • McAvaney, B. J., and G. D. Hess, 1996: The revised surface fluxes parametrisation in BMRC: Formulation. Bureau of Meteorology Research Centre Res. Rep. 56, 27 pp.

    • Search Google Scholar
    • Export Citation
  • Moore, A. M., and R. Kleeman, 1998: Skill assessment for ENSO using ensemble prediction. Quart. J. Roy. Meteor. Soc., 124 , 557584.

  • Nicholls, N., 1989: Sea surface temperature and Australian winter rainfall. J. Climate, 2 , 965973.

  • Pacanowski, R. C., K. Dixon, and A. Rosati, 1991: The GFDL modular ocean model users guide, version 1.0. Geophysical Fluid Dynamics Laboratory Ocean Group Tech. Rep. 2, 16 pp.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., G. J. Shutts, and R. Swinbank, 1986: Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parameterization. Quart. J. Roy. Meteor. Soc., 112 , 10011039.

    • Search Google Scholar
    • Export Citation
  • Paulson, C. A., and J. J. Simpson, 1977: Irradiance measurements in the upper ocean. J. Phys. Oceanogr., 7 , 952956.

  • Power, S. B., R. Kleeman, F. Tseitkin, and N. R. Smith, 1995: On a global version of the GFDL modular ocean model for ENSO studies. Bureau of Meteorology Research Centre Tech. Rep., 18 pp.

    • Search Google Scholar
    • Export Citation
  • Power, S. B., F. Tseitkin, R. A. Colman, and A. Sulaiman, 1998: A coupled general circulation model for seasonal prediction and climate change research. Bureau of Meteorology Research Centre Res. Ref. 66, 52 pp.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface temperature analysis using optimum interpolation. J. Climate, 7 , 929948.

    • Search Google Scholar
    • Export Citation
  • Rosati, A., K. Miyakoda, and R. Gudgel, 1997: The impact of ocean initial conditions on ENSO forecasting with a coupled model. Mon. Wea. Rev., 125 , 754772.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., and B. N. Goswami, 1997: Intercomparison of the seasonal cycle of tropical surface stress in 17 AMIP atmospheric general circulation models. Climate Dyn., 13 , 561585.

    • Search Google Scholar
    • Export Citation
  • Schiller, A., J. S. Godfrey, P. C. McIntosh, G. Meyers, and S. E. Wijffels, 1998: Seasonal near-surface dynamics and thermodynamics of the Indian Ocean and Indonesian throughflow in a global ocean general circulation model. J. Phys. Oceanogr., 28 , 22882312.

    • Search Google Scholar
    • Export Citation
  • Schiller, A., J. S. Godfrey, P. C. McIntosh, G. Meyers, and R. Fiedler, 2000: Interannual dynamics and thermodynamics of the Indo–Pacific Oceans. J. Phys. Oceangr, 30 , 9871012.

    • Search Google Scholar
    • Export Citation
  • Schwarzkopf, M. D., and S. B. Fels, 1991: The simplified exchange method revisited: An accurate, rapid method for computation of infrared of cooling rates and fluxes. J. Geophys. Res., 96 , 90759096.

    • Search Google Scholar
    • Export Citation
  • Smith, N. R., 1991: Objective quality controls and performance diagnostics of an oceanic subsurface thermal analysis scheme. J. Geophys. Res., 96 , 32793287.

    • Search Google Scholar
    • Export Citation
  • Smith, N. R., . 1995a: The BMRC ocean thermal analysis system. Aust. Meteor. Mag., 44 , 93110.

  • Smith, N. R., . 1995b: An improved system for tropical ocean subsurface temperature analyses. J. Atmos. Oceanic Technol., 12 , 850870.

    • Search Google Scholar
    • Export Citation
  • Smith, N. R., and G. Meyers, 1996: An evaluation of XBT and TAO data for monitoring tropical ocean variability. J. Geophys. Res., 101 , 2848928502.

    • Search Google Scholar
    • Export Citation
  • Smith, N. R., J. E. Blomley, and G. Meyers, 1991: A univariate statistical interpolation scheme for subsurface thermal analyses in the tropical oceans. Progress in Oceanography, Vol. 28, Pergamon, 219–256.

    • Search Google Scholar
    • Export Citation
  • Stockdale, T. N., 1997: Coupled ocean–atmosphere forecasts in the presence of climate drift. J. Climate, 10 , 809818.

  • Stockdale, T. N., D. L. T. Anderson, J. O. S. Alves, and M. A. Balmaseda, 1998: Global seasonal rainfall forecasts using a coupled ocean–atmosphere mode. Nature, 392 , 370373.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1988: Parameterization of cumulus convection in large-scale models. Physically-Based Modelling and Simulation of Climate and Climatic Change, Part 1, M. E. Schlesinger Ed., Kluwer Academic, 375–431.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., . 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117 , 17791800.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N-C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103 , 1429114324.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1302 816 93
PDF Downloads 218 74 4