• Anderson, D. L. T., J. Sheinbaum, and K. Haines, 1996: Data assimilation in ocean models. Rep. Progr. Phys., 59 , 12091266.

  • Balgovind, R., A. Dalcher, M. Ghil, and E. Kalnay, 1983: A stochastic-dynamic model for the spatial structure of forecast error statistics. Mon. Wea. Rev., 111 , 273296.

    • Search Google Scholar
    • Export Citation
  • Battisti, D. S., and A. C. Hirst, 1989: Interannual variability in a tropical atmosphere–ocean model: Influence of the basic state, ocean geometry and nonlinearity. J. Atmos. Sci., 46 , 16871712.

    • Search Google Scholar
    • Export Citation
  • Behringer, D. W., M. Ji, and A. Leetmaa, 1998: An improved coupled model for ENSO prediction and implications for ocean initialization. Part I: The ocean data assimilation system. Mon. Wea. Rev., 126 , 10131021.

    • Search Google Scholar
    • Export Citation
  • Bennett, A. F., B. S. Chua, D. E. Harrison, and M. J. McPhaden, 1998: Generalized inversion of tropical atmosphere–ocean data and a coupled model of the tropical Pacific. J. Climate, 11 , 17681792.

    • Search Google Scholar
    • Export Citation
  • Bennett, A. F., B. S. Chua, D. E. Harrison, and M. J. McPhaden, 2000: Generalized inversion of tropical atmosphere–ocean (TAO) data and a coupled model of the tropical Pacific. Part II: The 1995–96 La Niña and 1997–98 El Niño. J. Climate, 13 , 27702785.

    • Search Google Scholar
    • Export Citation
  • Boggs, D., M. Ghil, and C. Keppenne, 1995: A stabilized sparse-matrix U-D square-root implementation of a large-state extended Kalman filter. Proc. WMO Second Int. Symp. on Assimilation of Observations in Meteorology and Oceanography, Tokyo, Japan, WMO/TD-No 651, 219–224.

    • Search Google Scholar
    • Export Citation
  • Burgers, G., 1999: The El Niño stochastic oscillator. Climate Dyn., 15 , 521531.

  • Cane, M. A., and R. J. Patton, 1984: Numerical model for low-frequency equatorial dynamics. J. Phys. Oceanogr., 14 , 18531863.

  • Cane, M. A., S. E. Zebiak, and S. C. Dolan, 1986: Experimental forecasts of El Niño. Nature, 321 , 827832.

  • Cane, M. A., S. E. Zebiak, and Y. Xue, 1995: Model studies of the long-term behavior of ENSO. Natural Climate Variability on Decade-to-Century Time Scales, D. G. Martinson et al., Eds., National Academy Press, 442–457.

    • Search Google Scholar
    • Export Citation
  • Cane, M. A., A. Kaplan, R. N. Miller, B. Tang, E. C. Hackert, and A. J. Busalacchi, 1996: Mapping tropical Pacific sea level: Data assimilation via a reduced state space Kalman filter. J. Geophys. Res., 101 , 2259922617.

    • Search Google Scholar
    • Export Citation
  • Chen, D., M. A. Cane, S. E. Zebiak, and A. Kaplan, 1998: The impact of sea level data assimilation on the Lamont model prediction of the 1997/98 El Niño. Geophys. Res. Lett., 25 , 28372840.

    • Search Google Scholar
    • Export Citation
  • Chen, D., M. A. Cane, and S. E. Zebiak, . 1999: The impact of NSCAT winds on predicting the 1997/98 El Niño: A case study with the Lamont–Doherty Earth Observatory model. J. Geophys. Res., 104 , 1132111327.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., 1995: On-line estimation of error variance parameters for atmospheric data assimilation. Mon. Wea. Rev., 123 , 11281145.

  • Fu, L-L., I. Fukumori, and R. N. Miller, 1993: Fitting dynamic models to the Geosat sea level observations in the tropical Pacific ocean. Part II: A linear, wind-driven model. J. Phys. Oceanogr., 23 , 21622181.

    • Search Google Scholar
    • Export Citation
  • Fukumori, I., and P. Malanotte-Rizzoli, 1995: An approximate Kalman filter for ocean data assimilation: An example with an idealized Gulf Stream model. J. Geophys. Res., 100 , 67776793.

    • Search Google Scholar
    • Export Citation
  • Fukumori, I., R. Raghunath, L-L. Fu, and Y. Chao, 1999: Assimilation of TOPEX/Poseidon altimeter data into a global ocean circulation model: How good are the results? J. Geophys. Res., 104 , 2564725665.

    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125 , 723757.

    • Search Google Scholar
    • Export Citation
  • Gelb, A., Ed.,. 1974: Applied Optimal Estimation. The MIT Press, 374 pp.

  • Ghil, M., 1997: Advances in sequential estimation for atmospheric and oceanic flows. J. Meteor. Soc. Japan, 75 , 289304.

  • Ghil, M., and P. Malanotte-Rizzoli, 1991: Data assimilation in meteorology and oceanography. Advances in Geophysics, Vol. 33, Academic Press, 141–266.

    • Search Google Scholar
    • Export Citation
  • Ghil, M., and K. Ide, 1994: Extended Kalman filtering for vortex systems: An example of observing-system design. Data Assimilation: A New Tool for Modeling the Ocean in a Global Change Perspective, P. Brasseur and J. C. H. Nihoul, Eds., Springer-Verlag, 167–191.

    • Search Google Scholar
    • Export Citation
  • Ghil, M., and R. Todling, 1996: Tracking atmospheric instabilities with the Kalman filter. Part II: Two-layer Results. Mon. Wea. Rev., 124 , 23402352.

    • Search Google Scholar
    • Export Citation
  • Ghil, M., and N. Jiang, 1998: Recent forecast skill for the El Niño/Southern Oscillation. Geophys. Res. Lett., 25 , 171174.

  • Ghil, M., and A. W. Robertson, 2000: Solving problems with GCMs: General circulation models and their role in the climate modeling hierarchy. General Circulation Model Development: Past, Present and Future, D. Randall, Ed., Academic Press, 285–325.

    • Search Google Scholar
    • Export Citation
  • Ghil, M., S. E. Cohn, J. Tavantzis, K. Bube, and E. Isaacson, 1981: Applications of estimation theory to numerical weather prediction. Dynamic Meteorology: Data Assimilation Methods, L. Bengtsson, M. Ghil, and E. Källén, Eds., Springer-Verlag, 139–224.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106 , 447462.

  • Graham, N. E., T. P. Barnett, and M. Latif, 1992: Considerations of the predictability of ENSO with a lower-order coupled model. TOGA Notes, 7 , 1115.

    • Search Google Scholar
    • Export Citation
  • Hao, Z., 1994: Data assimilation for interannual climate-change prediction. Ph.D. dissertation, University of California, Los Angeles, 223 pp.

    • Search Google Scholar
    • Export Citation
  • Hao, Z., and M. Ghil, 1994: Data assimilation in a simple tropical ocean model with wind-stress errors. J. Phys. Oceanogr., 24 , 21112128.

    • Search Google Scholar
    • Export Citation
  • Hao, Z., and M. Ghil, . 1995: Sequential parameter estimation for a coupled ocean-atmosphere model. Proc. WMO Second Int. Symp. on Assimilation of Observations in Meteorology and Oceanography, Tokyo, Japan, WMO/TD-No. 651, 181–186.

    • Search Google Scholar
    • Export Citation
  • Hao, Z., J. D. Neelin, and F-F. Jin, 1993: Nonlinear tropical air–sea interaction in the fastwave limit. J. Climate, 6 , 15231544.

  • Ide, K., and M. Ghil, 1997a: Extended Kalman filtering for vortex systems. Part I: Methodology and point vortices. Dyn. Atmos. Oceans, 27 , 301332.

    • Search Google Scholar
    • Export Citation
  • Ide, K., and M. Ghil, . 1997b: Extended Kalman filtering for vortex systems. Part II: Rankine vortices and observing-system design. Dyn. Atmos. Oceans, 27 , 333350.

    • Search Google Scholar
    • Export Citation
  • Ide, K., P. Courtier, M. Ghil, and A. C. Lorenc, 1997: Unified notation for data assimilation: Operational, sequential and variational. J. Meteor. Soc. Japan, 75 , 181189.

    • Search Google Scholar
    • Export Citation
  • Jiang, N., J. D. Neelin, and M. Ghil, 1995: Quasi-quadrennial and quasi-biennial variability in COADS equatorial Pacific sea surface temperature and winds. Climate Dyn., 12 , 101112.

    • Search Google Scholar
    • Export Citation
  • Jin, F-F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54 , 811829.

  • Jin, F-F., and J. D. Neelin, 1993: Modes of interannual tropical ocean–atmosphere interaction—A unified view. Part I: Numerical results. J. Atmos. Sci., 50 , 34783503.

    • Search Google Scholar
    • Export Citation
  • Jin, F-F., J. D. Neelin, and M. Ghil, 1994: El Niño on the Devil's staircase: Annual subharmonic steps to chaos. Science, 264 , 7072.

    • Search Google Scholar
    • Export Citation
  • Jin, F-F., J. D. Neelin, and M. Ghil, . 1996: El Niño/Southern Oscillation and the annual cycle: Subharmonic frequency-locking and aperiodicity. Physica D, 98 , 442465.

    • Search Google Scholar
    • Export Citation
  • Keppenne, C. L., 2000: Data assimilation into a primitive-equation model with a parallel ensemble Kalman filter. Mon. Wea. Rev., 128 , 19711981.

    • Search Google Scholar
    • Export Citation
  • Keppenne, C. L., and M. Ghil, 1992: Adaptive filtering and prediction of the Southern Oscillation index. J. Geophys. Res., 97 , 2044920454.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and Coauthors. 1998: A review of the predictability and prediction of ENSO. J. Geophys. Res., 103 , 1437514393.

  • Lee, T., J-P. Boulanger, A. Foo, L-L. Fu, and R. Giering, 2000: Data assimilation by an intermediate coupled ocean-atmosphere model: Application to the 1997–1998 El Niño. J. Geophys. Res., 105 , 2606326087.

    • Search Google Scholar
    • Export Citation
  • Leetmaa, A., and M. Ji, 1989: Operational hindcasting of the tropical Pacific. Dyn. Atmos. Oceans, 13 , 465490.

  • Miller, R. N., and M. A. Cane, 1989: A Kalman filter analysis of sea level height in the tropical Pacific. J. Phys. Oceanogr., 19 , 773790.

    • Search Google Scholar
    • Export Citation
  • Miller, R. N., M. Ghil, and F. Gauthiez, 1994: Advanced data assimilation in strongly nonlinear dynamical systems. J. Atmos. Sci., 51 , 10371056.

    • Search Google Scholar
    • Export Citation
  • Miller, R. N., A. J. Busalacchi, and E. C. Hackert, 1995: Sea surface topography fields of the tropical Pacific from data assimilation. J. Geophys. Res., 100 , 1338913425.

    • Search Google Scholar
    • Export Citation
  • Miller, R. N., E. F. Carter Jr., and S. T. Blue, 1999: Data assimilation into nonlinear stochastic models. Tellus, 51A , 167194.

  • Mitchell, H. L., and P. L. Houtekamer, 2000: An adaptive ensemble Kalman filter. Mon. Wea. Rev., 128 , 416433.

  • Moron, V., R. Vautard, and M. Ghil, 1998: Trends, interdecadal and interannual oscillations in global sea-surface temperatures. Climate Dyn., 14 , 545569.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., 1990: A hybrid coupled general circulation model for El Niño studies. J. Atmos. Sci., 47 , 674693.

  • Neelin, J. D., and F-F. Jin, 1993: Modes of interannual tropical ocean–atmosphere interaction—A unified view. Part II: Analytical results in the weak-coupling limit. J. Atmos. Sci., 50 , 35043522.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., M. Latif, and F-F. Jin, 1994: Dynamics of coupled ocean-atmosphere models: The tropical problem. Annu. Rev. Fluid Mech., 26 , 617659.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., D. S. Battisti, A. C. Hirst, F-F. Jin, Y. Wakata, T. Yamagata, and S. E. Zebiak, 1998: ENSO theory. J. Geophys. Res., 103 , 1426114290.

    • Search Google Scholar
    • Export Citation
  • Ngodock, H. E., B. S. Chua, and A. F. Bennett, 2000: Generalized inverse of a reduced gravity primitive equation ocean model and tropical atmosphere–ocean data. Mon. Wea. Rev., 128 , 17571777.

    • Search Google Scholar
    • Export Citation
  • Parrish, D. F., and S. E. Cohn, 1985: A Kalman filter for a two-dimensional shallow water model: Formulation and preliminary experiments. Office Note 304, National Meteorological Center, Washington, DC, 64 pp.

    • Search Google Scholar
    • Export Citation
  • Penland, C., 1996: A stochastic model of IndoPacific sea surface temperature anomalies. Physica D, 98 , 534558.

  • Philander, S. G., 1990: El Niño, La Niña, and the Southern Oscillation. Academic Press, 293 pp.

  • Rasmusson, E. M., X. Wang, and C. F. Ropelewski, 1990: The biennial component of ENSO variability. J. Mar. Syst., 1 , 7196.

  • Sheinbaum, J., and D. L. T. Anderson, 1990: Variational assimilation of XBT data. Part II. Sensitivity studies and use of smoothing constraints. J. Phys. Oceanogr., 20 , 689704.

    • Search Google Scholar
    • Export Citation
  • Suarez, M. J., and P. S. Schopf, 1988: A delayed action oscillator for ENSO. J. Atmos. Sci., 45 , 32833287.

  • Todling, R., and S. E. Cohn, 1994: Suboptimal schemes for atmospheric data assimilation based on the Kalman filter. Mon. Wea. Rev., 122 , 25302557.

    • Search Google Scholar
    • Export Citation
  • Todling, R., and M. Ghil, 1994: Tracking atmospheric instabilities with the Kalman filtering. Part I: Methodology and one-layer results. Mon. Wea. Rev., 122 , 183204.

    • Search Google Scholar
    • Export Citation
  • Tziperman, E., L. Stone, M. A. Cane, and H. Jarosh, 1994: El Niño chaos: Overlapping of resonances between the seasonal cycle and the Pacific ocean–atmosphere oscillator. Science, 264 , 7274.

    • Search Google Scholar
    • Export Citation
  • Verron, J., L. Gourdeau, D. T. Pham, R. Murtugudde, and A. J. Busalacchi, 1999: An extended Kalman filter to assimilate satellite altimeter data into a nonlinear numerical model of the tropical Pacific Ocean: Method and validation. J. Geophys. Res., 104 , 54415458.

    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., and M. A. Cane, 1987: A model El Niño Southern Oscillation. Mon. Wea. Rev., 115 , 22622278.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1 1 1
PDF Downloads 0 0 0

Data Assimilation for a Coupled Ocean–Atmosphere Model. Part I: Sequential State Estimation

View More View Less
  • 1 Department of Atmospheric Sciences and Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, California
Restricted access

Abstract

The assimilation problem for the coupled ocean–atmosphere system in the tropical Pacific is investigated using an advanced sequential estimator, the extended Kalman filter (EKF). The intermediate coupled model used in this study consists of an upper-ocean model and a steady-state atmospheric response to it. Model errors arise from the uncertainty in atmospheric wind stress. Data assimilation is applied in this idealized context to produce a time-continuous, dynamically consistent description of the model's El Niño–Southern Oscillation, based on incomplete and inaccurate observations. This study has two parts: Part I (the present paper) deals with state estimation for the coupled system, assuming that model parameters are correct, while Part II will deal with simultaneous state and parameter estimation.

The dynamical structure of forecast errors is estimated sequentially using a linearized Kalman filter and compared with that of an uncoupled ocean model. The coupling produces large changes in the structure of the error-correlation field. For example, error correlations with opposite signs in the western and eastern part of the model basin are caused by wind stress feedbacks.

The full EKF method is used to assimilate various model-generated synthetic oceanic datasets into the coupled model in an identical-twin framework. The assimilated datasets include the sea surface temperature and a combination of wave velocities and thermocline depth anomaly. With the EKF, the model's forecast-assimilation cycle is able to estimate correctly the phase and amplitude of the basic ENSO oscillation while using very few observations. This includes a set of observations that only cover a single meridional section of the ocean, preferably in the eastern basin.

Current affiliation: Goddard Earth Sciences and Technology Center, University of Maryland, Baltimore County, and Hydrological Sciences Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland

Corresponding author address: Dr. Chaojiao Sun, Hydrological Sciences Branch, NASA Goddard Space Flight Center, Mail Code 974, Greenbelt, MD 20771. Email: csun@hsb.gsfc.nasa.gov

Abstract

The assimilation problem for the coupled ocean–atmosphere system in the tropical Pacific is investigated using an advanced sequential estimator, the extended Kalman filter (EKF). The intermediate coupled model used in this study consists of an upper-ocean model and a steady-state atmospheric response to it. Model errors arise from the uncertainty in atmospheric wind stress. Data assimilation is applied in this idealized context to produce a time-continuous, dynamically consistent description of the model's El Niño–Southern Oscillation, based on incomplete and inaccurate observations. This study has two parts: Part I (the present paper) deals with state estimation for the coupled system, assuming that model parameters are correct, while Part II will deal with simultaneous state and parameter estimation.

The dynamical structure of forecast errors is estimated sequentially using a linearized Kalman filter and compared with that of an uncoupled ocean model. The coupling produces large changes in the structure of the error-correlation field. For example, error correlations with opposite signs in the western and eastern part of the model basin are caused by wind stress feedbacks.

The full EKF method is used to assimilate various model-generated synthetic oceanic datasets into the coupled model in an identical-twin framework. The assimilated datasets include the sea surface temperature and a combination of wave velocities and thermocline depth anomaly. With the EKF, the model's forecast-assimilation cycle is able to estimate correctly the phase and amplitude of the basic ENSO oscillation while using very few observations. This includes a set of observations that only cover a single meridional section of the ocean, preferably in the eastern basin.

Current affiliation: Goddard Earth Sciences and Technology Center, University of Maryland, Baltimore County, and Hydrological Sciences Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland

Corresponding author address: Dr. Chaojiao Sun, Hydrological Sciences Branch, NASA Goddard Space Flight Center, Mail Code 974, Greenbelt, MD 20771. Email: csun@hsb.gsfc.nasa.gov

Save