• Adams, D. K., and A. C. Comrie, 1997: The North American monsoon. Bull. Amer. Meteor. Soc., 78 , 21972213.

  • Anderson, B. T., J. O. Roads, S-C. Chen, and H-M. Juang, 2000: Regional simulation of the low-level monsoon winds over the Gulf of California and southwestern United States. J. Geophys. Res., 105 ((D14),) 1795517969.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part 1. J. Atmos. Sci., 31 , 674701.

    • Search Google Scholar
    • Export Citation
  • Barlow, M., S. Nigam, and E. H. Berbery, 1998: Evolution of the North American monsoon system. J. Climate, 11 , 22382257.

  • Betts, A. K., 1982: Saturation point analysis of moist convective overturning. J. Atmos. Sci., 39 , 14841505.

  • Betts, A. K., . 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112 , 677691.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and M. J. Miller, 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets. Quart. J. Roy. Meteor. Soc., 112 , 693709.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part 1: Model implementation and sensitivity. Mon. Wea. Rev., 129 , 569585.

    • Search Google Scholar
    • Export Citation
  • Copeland, J. H., R. A. Pielke, and T. G. F. Kittel, 1996: Potential climatic impacts of vegetation change: A regional modeling study. J. Geophys. Res., 101 , 74097418.

    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., R. M. Errico, F. Giorgi, and G. T. Bates, 1989: A regional climate model for the western United States. Climatic Change, 15 , 383422.

    • Search Google Scholar
    • Export Citation
  • Douglas, M. W., 1995: The summertime low-level jet over the Gulf of California. Mon. Wea. Rev., 123 , 23342347.

  • Douglas, M. W., R. A. Maddox, K. W. Howard, and S. Reyes, 1993: The Mexican monsoon. J. Climate, 6 , 16651677.

  • Fritsch, J. M., and C. F. Chappell, 1980: Numerical prediction of convectively driven mesoscale pressure systems. Part I: Convective parameterization. J. Atmos. Sci., 37 , 17221732.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., 1990: On the simulation of regional climate using a limited area model nested in a general circulation model. J. Climate, 3 , 941963.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and M. R. Marinucci, 1996: An investigation of the sensitivity of simulated precipitation to model resolution and its implications for climate studies. Mon. Wea. Rev., 124 , 148166.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and L. O. Mearns, 1999: Introduction to special section: Regional climate modeling revisited. J. Geophys. Res., 104 ((D6),) 63356352.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and C. Shields, 1999: Tests of precipitation parameterizations available in latest version of NCAR regional climate model (RegCM) over continental United States. J. Geophys. Res., 104 ((D6),) 63536357.

    • Search Google Scholar
    • Export Citation
  • Gochis, D. J., Z-L. Yang, W. J. Shuttleworth, and R. A. Maddox, 2000: Quantification of error in a pseudo-regional climate simulation of the North American Monsoon. Proc. Second Southwest Weather Symp., Tucson, AZ, National Weather Service.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev., 121 , 764787.

  • Grell, G. A., J. Dudhia, and D. R. Stauffer, 1994: A description of the fifth generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-380+STR, 138 pp.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Y. Yao, and X-L. Wang, 1997: Influence of the North American monsoon system on the U.S. summer precipitation regime. J. Climate, 10 , 26002622.

    • Search Google Scholar
    • Export Citation
  • Hong, S-Y., and H-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124 , 23222339.

    • Search Google Scholar
    • Export Citation
  • Janjic, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122 , 927945.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47 , 27842802.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors. 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kuo, H. L., 1974: Further studies of the parameterization of the influence of cumulus convection on large-scale flow. J. Atmos. Sci., 31 , 12321240.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., and M. Dudek, 1992: Parameterization of convective precipitation in mesoscale numerical models: A critical review. Mon. Wea. Rev., 120 , 326344.

    • Search Google Scholar
    • Export Citation
  • NAME, cited 2001: North American Monsoon Experiment science plan. [Available online at http://yao.wwb.noaa.gov/monsoon/NAME.html.].

  • PACS-SONET, cited 2000: Pan-American Climate Studies Sounding Network. [Available online at http://www.nssl.noaa.gov/projects/pacs/.].

  • Reyes, S., M. W. Douglas, and R. A. Maddox, 1994: El monzon del suroeste de Norteamerica (TRAVASON/SWAMP). Atmosfera, 7 , 117137.

  • Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface temperature analyses. J. Climate, 7 , 929948.

  • Schmitz, J. T., and S. L. Mullen, 1996: Water vapor transport associated with the summertime North American monsoon as depicted by ECMWF analyses. J. Climate, 9 , 16211634.

    • Search Google Scholar
    • Export Citation
  • Seth, A., and F. Giorgi, 1998: The effects of domain choice on summer precipitation simulation and sensitivity in a regional climate model. J. Climate, 11 , 26982712.

    • Search Google Scholar
    • Export Citation
  • Small, E. E., 2001: The influence of soil moisture anomalies on variability of the North American monsoon system. Geophys. Res. Lett., 28 , 139142.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., K. L. Hsu, X. Gao, H. V. Gupta, B. Imam, and D. Braithwaite, 2000: Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Amer. Meteor. Soc., 81 , 20352046.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., 1996: Effects of persistent, midlatitude mesoscale regions of convection on the large-scale environment during the warm season. J. Atmos. Sci., 53 , 35033527.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., R. L. Gall, S. L. Mullenn, and K. W. Howard, 1995: Model climatology of the Mexican monsoon. J. Climate, 8 , 17751794.

    • Search Google Scholar
    • Export Citation
  • von Storch, H., and F. W. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

  • Wang, W., and N. L. Seaman, 1997: A comparison study of convective parameterization schemes in a mesoscale model. Mon. Wea. Rev., 125 , 252278.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.-Ocean, 33 , 407446.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 8 8 8
PDF Downloads 4 4 4

Sensitivity of the Modeled North American Monsoon Regional Climate to Convective Parameterization

View More View Less
  • 1 Department of Hydrology and Water Resources, The University of Arizona, Tucson, Arizona
  • | 2 Department of Hydrology and Water Resources and Department of Atmospheric Sciences, The University of Arizona, Tucson, Arizona
  • | 3 Department of Hydrology and Water Resources, The University of Arizona, Tucson, Arizona
Restricted access

Abstract

This paper documents the sensitivity of the modeled evolution of the North American monsoon system (NAMS) to convective parameterization in terms of thermodynamic and circulation characteristics, stability profiles, and precipitation. The convective parameterization schemes (CPSs) of Betts–Miller–Janjic, Kain–Fritsch, and Grell were tested using version 3.4 of the PSU–NCAR fifth-generation Mesoscale Model (MM5) running in a pseudoclimate mode. Model results for the initial phase of the 1999 NAM are compared with surface climate station observations and seven radiosonde sites in Mexico and the southwestern United States. The results show substantial differences in modeled precipitation, surface climate, and atmospheric stability occuring between the different model simulations, which are attributable to the representation of convection in the model. Moreover, large intersimulation differences in the low-level circulation fields are found. While none of the CPSs tested gave perfect simulation of observations everywhere in the model domain, the Kain–Fritsch scheme generally gave significantly superior estimates of surface and upper air verification error statistics.

Corresponding author address: David Gochis, Department of Hydrology and Water Resources, The University of Arizona, Harshbarger Building 11, Tucson, AZ 85721. Email: gochis@hwr.arizona.edu

Abstract

This paper documents the sensitivity of the modeled evolution of the North American monsoon system (NAMS) to convective parameterization in terms of thermodynamic and circulation characteristics, stability profiles, and precipitation. The convective parameterization schemes (CPSs) of Betts–Miller–Janjic, Kain–Fritsch, and Grell were tested using version 3.4 of the PSU–NCAR fifth-generation Mesoscale Model (MM5) running in a pseudoclimate mode. Model results for the initial phase of the 1999 NAM are compared with surface climate station observations and seven radiosonde sites in Mexico and the southwestern United States. The results show substantial differences in modeled precipitation, surface climate, and atmospheric stability occuring between the different model simulations, which are attributable to the representation of convection in the model. Moreover, large intersimulation differences in the low-level circulation fields are found. While none of the CPSs tested gave perfect simulation of observations everywhere in the model domain, the Kain–Fritsch scheme generally gave significantly superior estimates of surface and upper air verification error statistics.

Corresponding author address: David Gochis, Department of Hydrology and Water Resources, The University of Arizona, Harshbarger Building 11, Tucson, AZ 85721. Email: gochis@hwr.arizona.edu

Save