Abstract
Simulations are compared to determine the effect of the details of the coupling of the parameterization suite with the dynamical core on the simulated climate. Simulations based on time-split and process-split couplings are compared to a simulation with the original version of the NCAR Community Climate Model–3 (CCM3), which is a mixture of the two approaches. In the process-split coupling, the two components are based on the same state and their tendencies are added to produce the updated state. In the time-split coupling, the two components are calculated sequentially, each based on the state produced by the other. Overall the differences between simulations produced with the various coupling strategies are relatively small. Thus, with the time step used in the CCM3, the different time truncation errors introduced by the different coupling strategies have less effect on simulations than other arbitrary aspects of the model design. This does not imply that the time truncation errors are insignificant, just that they are similar in the cases examined here. There are, however, regions where the differences are statistically significant. The differences in the thermal balance are analyzed in these regions. The most notable differences occur between the time-split case and CCM3 over regions of Antarctica. In summer, although the temperature difference near the surface is modest, the balance of terms in the two cases is very different, with a difference in sign in the sensible heat flux between the two cases. In winter, the parameterization terms have a very strong grid-scale structure associated with parameterized clouds forming predominantly at a single grid level. The dynamics is unable to respond with a grid-scale structure. This draws into question whether the vertical resolution is adequate to properly model the physical processes.
Corresponding author address: Dr. David L. Williamson, NCAR/CGD, P.O. Box 3000, Boulder, CO 80307-3000. Email: wmson@ucar.edu