Nonclassical Cold-Frontal Structure Caused by Dry Subcloud Air in Northern Utah during the Intermountain Precipitation Experiment (IPEX)

David M. Schultz Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by David M. Schultz in
Current site
Google Scholar
PubMed
Close
and
Robert J. Trapp Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, Indiana

Search for other papers by Robert J. Trapp in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The purpose of the Intermountain Precipitation Experiment (IPEX) is to improve understanding of precipitating systems in the Intermountain West. Instrumentation deployed during the field phase of IPEX sampled a strong cold front and associated convection that moved through northern Utah on 14–15 February 2000. The surface cold front was characterized by a sharp temperature drop (8°C in 8 min), strong pressure rise (3 hPa in 30 min), and gusts to 40 m s−1. The temperature drop at high-elevation surface stations (2500–3000 m MSL) preceded the temperature drop at low-elevation surface stations (1290–2000 m MSL) by as much as an hour, implying a forward- or downshear-tilting frontal structure. Consistent with the cooling aloft, a hydrostatic pressure rise and wind shift preceded the temperature drop at the surface. Radar captured the rapid evolution of the wind shift line into a gravity current. A forward-sloping cloud with mammatus and a 20-hPa-deep superadiabatic layer underneath were observed by radar and radiosondes, respectively. Shading from this forward-sloping cloud is believed to have produced a surface-based prefrontal inversion upon which a solitary gravity wave traveled. These and other observations reveal that the forward-sloping cloud generated by a shortwave trough aloft was producing precipitation that sublimated, melted, and evaporated in the dry subcloud air (dewpoint depression of 5°–10°C), causing the cooling aloft and the nonclassical frontal structure.

Although the storm-total precipitation associated with this system was generally light (less than 20 mm at all observing sites), the amount of precipitation was strongly a function of elevation. During one 6-h period, precipitation at stations above cloud base (roughly 2000 m MSL) varied widely, mostly due to orographic effects, although precipitation amounts at most stations were about 7–11 mm. In contrast, precipitation amounts decreased with distance below cloud base, consistent with sublimation and evaporation in the dry subcloud air.

Corresponding author address: Dr. David M. Schultz, NOAA/National Severe Storms Laboratory, 1313 Halley Circle, Norman, OK 73069. Email: david.schultz@noaa.gov

Abstract

The purpose of the Intermountain Precipitation Experiment (IPEX) is to improve understanding of precipitating systems in the Intermountain West. Instrumentation deployed during the field phase of IPEX sampled a strong cold front and associated convection that moved through northern Utah on 14–15 February 2000. The surface cold front was characterized by a sharp temperature drop (8°C in 8 min), strong pressure rise (3 hPa in 30 min), and gusts to 40 m s−1. The temperature drop at high-elevation surface stations (2500–3000 m MSL) preceded the temperature drop at low-elevation surface stations (1290–2000 m MSL) by as much as an hour, implying a forward- or downshear-tilting frontal structure. Consistent with the cooling aloft, a hydrostatic pressure rise and wind shift preceded the temperature drop at the surface. Radar captured the rapid evolution of the wind shift line into a gravity current. A forward-sloping cloud with mammatus and a 20-hPa-deep superadiabatic layer underneath were observed by radar and radiosondes, respectively. Shading from this forward-sloping cloud is believed to have produced a surface-based prefrontal inversion upon which a solitary gravity wave traveled. These and other observations reveal that the forward-sloping cloud generated by a shortwave trough aloft was producing precipitation that sublimated, melted, and evaporated in the dry subcloud air (dewpoint depression of 5°–10°C), causing the cooling aloft and the nonclassical frontal structure.

Although the storm-total precipitation associated with this system was generally light (less than 20 mm at all observing sites), the amount of precipitation was strongly a function of elevation. During one 6-h period, precipitation at stations above cloud base (roughly 2000 m MSL) varied widely, mostly due to orographic effects, although precipitation amounts at most stations were about 7–11 mm. In contrast, precipitation amounts decreased with distance below cloud base, consistent with sublimation and evaporation in the dry subcloud air.

Corresponding author address: Dr. David M. Schultz, NOAA/National Severe Storms Laboratory, 1313 Halley Circle, Norman, OK 73069. Email: david.schultz@noaa.gov

Save
  • Barnes, S. L., 1964: A technique for maximizing details in numerical weather map analysis. J. Appl. Meteor., 3 , 396409.

  • Barth, M. C., and D. B. Parsons, 1996: Microphysical processes associated with intense frontal rainbands and the effect of evaporation and melting on frontal dynamics. J. Atmos. Sci., 53 , 15691586.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., J. M. Brown, K. J. Brundage, B. Schwartz, T. Smirnova, T. L. Smith, L. L. Morone, and G. J. DiMego, 1998: The operational RUC-2. Preprints, 16th Conf. on Weather Analysis and Forecasting, Phoenix, AZ, Amer. Meteor. Soc., 249–252.

    • Search Google Scholar
    • Export Citation
  • Berson, F. A., 1958: Some measurements on undercutting cold air. Quart. J. Roy. Meteor. Soc., 84 , 116.

  • Bjerknes, J., 1919: On the structure of moving cyclones. Geophys. Publ., 1 (2) 18.

  • Bluestein, H. B., 1993: Observations and Theory of Weather Systems. Vol. 2, Synoptic–Dynamic Meteorology in Midlatitudes,. Oxford University Press, 594 pp.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., R. Rotunno, and J. B. Klemp, 1999: Effects of coastal orography on landfalling cold fronts. Part I: Dry, inviscid dynamics. J. Atmos. Sci., 56 , 517533.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1990: Organization of clouds and precipitation in extratropical cyclones. Extratropical Cyclones: The Erik Palmén Memorial Volume, C. W. Newton and E. O. Holopainen, Eds., Amer. Meteor. Soc., 129–153.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and T. W. Harrold, 1970: Air motion and precipitation growth at a cold front. Quart. J. Roy. Meteor. Soc., 96 , 369389.

    • Search Google Scholar
    • Export Citation
  • Brundidge, K. C., 1965: The wind and temperature structure of nocturnal cold fronts in the first 1,420 feet. Mon. Wea. Rev., 93 , 587603.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2000a: Discrete propagation of surface fronts in a convective environment: Observations and theory. J. Atmos. Sci., 57 , 20412060.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2000b: Diabatically driven discrete propagation of surface fronts: A numerical analysis. J. Atmos. Sci., 57 , 20612079.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., 1982: A severe frontal rainband. Part I: Stormwide hydrodynamic structure. J. Atmos. Sci., 39 , 258279.

  • Charney, J. J., and J. M. Fritsch, 1999: Discrete frontal propagation in a nonconvective environment. Mon. Wea. Rev., 127 , 20832101.

  • Cheng, L., 2001: Validation of quantitative precipitation forecasts during the Intermountain Precipitation Experiment. M.S. thesis, Dept. of Meteorology, University of Utah, 137 pp. [Available online at http://www.met.utah.edu/jhorel/homepages/lcheng/thesis.html.].

    • Search Google Scholar
    • Export Citation
  • Clough, S. A., and R. A. A. Franks, 1991: The evaporation of frontal and other stratiform precipitation. Quart. J. Roy. Meteor. Soc., 117 , 10571080.

    • Search Google Scholar
    • Export Citation
  • Clough, S. A., H. W. Lean, N. M. Roberts, and R. M. Forbes, 2000: Dynamical effects of ice sublimation in a frontal wave. Quart. J. Roy. Meteor. Soc., 126 , 24052434.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., B. F. Smull, and M-J. Yang, 2002: Numerical simulations of a landfalling cold front observed during COAST: Rapid evolution and responsible mechanisms. Mon. Wea. Rev., 130 , 19451966.

    • Search Google Scholar
    • Export Citation
  • Cox, J. A. W., 2002: Kinematic structure of a Wasatch Mountain snowstorm. M.S. thesis, Dept. of Meteorology, University of Utah, 60 pp. [Available online at http://www.met.utah.edu/jimsteen/theses/cox02_thesis.pdf.].

    • Search Google Scholar
    • Export Citation
  • Crook, N. A., and M. W. Moncrieff, 1988: The effect of large-scale convergence on the generation and maintenance of deep moist convection. J. Atmos. Sci., 45 , 36063624.

    • Search Google Scholar
    • Export Citation
  • Dickinson, M. J., and D. J. Knight, 1999: Frontal interaction with mesoscale topography. J. Atmos. Sci., 56 , 35443559.

  • Doesken, N. J., and G. L. Schaefer, 1987: The contribution of SNOTEL precipitation measurements to climate analysis, monitoring and research in Colorado. Proc. Western Snow Conf., 55th Annual Meeting, Vancouver, BC, Canada, Western Snow Conference, 20–30.

    • Search Google Scholar
    • Export Citation
  • Doswell III, C. A., 1986: The human element in weather forecasting. Natl. Wea. Dig., 11 (2) 617.

  • Doswell III, C. A., and R. A. Maddox, 1986: The role of diagnosis in weather forecasting. Preprints, 11th Conf. on Weather Forecasting and Analysis, Kansas City, MO, Amer. Meteor. Soc., 177–182.

    • Search Google Scholar
    • Export Citation
  • Doswell III, C. A., and E. N. Rasmussen, 1994: The effect of neglecting the virtual temperature correction on CAPE calculations. Wea. Forecasting, 9 , 625629.

    • Search Google Scholar
    • Export Citation
  • Dunn, L. B., 1983: Quantitative and spacial [sic] distribution of winter precipitation along Utah's Wasatch Front. NOAA Tech. Memo. NWS WR-181, 72 pp. [Available from NOAA NWS Western Region Headquarters, 125 S. State Street, Rm. 1311, Salt Lake City, UT 84138-1102.].

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Fankhauser, J. C., G. M. Barnes, and M. A. LeMone, 1992: Structure of a midlatitude squall line formed in strong unidirectional shear. Mon. Wea. Rev., 120 , 237260.

    • Search Google Scholar
    • Export Citation
  • Fujita, T., 1959: Precipitation and cold air production in mesoscale thunderstorm systems. J. Meteor., 16 , 454466.

  • Gallus Jr., W. A., and M. Segal, 1999: Cold front acceleration over Lake Michigan. Wea. Forecasting, 14 , 771781.

  • Garratt, J. R., 1988: Summertime cold fronts in southeast Australia—Behavior and low-level structure of main frontal types. Mon. Wea. Rev., 116 , 636649.

    • Search Google Scholar
    • Export Citation
  • Gaudet, B., and W. R. Cotton, 1998: Statistical characteristics of a real-time precipitation forecasting model. Wea. Forecasting, 13 , 966982.

    • Search Google Scholar
    • Export Citation
  • Gilmore, M. S., and L. J. Wicker, 1998: The influence of midtropospheric dryness on supercell morphology and evolution. Mon. Wea. Rev., 126 , 943958.

    • Search Google Scholar
    • Export Citation
  • Grady, R. L., and J. Verlinde, 1997: Triple-Doppler analysis of a discretely propagating, long-lived, High Plains squall line. J. Atmos. Sci., 54 , 27292748.

    • Search Google Scholar
    • Export Citation
  • Hanstrum, B. N., G. A. Mills, A. Watson, J. P. Monteverdi, and C. A. Doswell III, 2002: The cool-season tornadoes of California and southern Australia. Wea. Forecasting, 17 , 705722.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., and P. O. G. Persson, 1982: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Part V: The substructure of narrow cold-frontal rainbands. J. Atmos. Sci., 39 , 280295.

    • Search Google Scholar
    • Export Citation
  • Hoffman, R. R., 1991: Human factors psychology in the support of forecasting: The design of advanced meteorological workstations. Wea. Forecasting, 6 , 98110.

    • Search Google Scholar
    • Export Citation
  • Horel, J., and Coauthors. 2002: MesoWest: Cooperative mesonets in the western United States. Bull. Amer. Meteor. Soc., 83 , 211225.

  • Houze Jr., R. A., 1997: Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Amer. Meteor. Soc., 78 , 21792196.

    • Search Google Scholar
    • Export Citation
  • Hoxit, L. R., C. F. Chappell, and J. M. Fritsch, 1976: Formation of mesolows or pressure troughs in advance of cumulonimbus clouds. Mon. Wea. Rev., 104 , 14191428.

    • Search Google Scholar
    • Export Citation
  • Huang, H-C., and K. A. Emanuel, 1991: The effects of evaporation on frontal circulations. J. Atmos. Sci., 48 , 619628.

  • Johns, R. H., J. M. Davies, and P. W. Leftwich, 1993: Some wind and instability parameters associated with strong and violent tornadoes. 2. Variations in the combinations of wind and instability parameters. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., No. 79, Amer. Geophys. Union, 583–590.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., 2001: Surface mesohighs and mesolows. Bull. Amer. Meteor. Soc., 82 , 1331.

  • Katzfey, J. J., and B. F. Ryan, 1997: Modification of the thermodynamic structure of the lower troposphere by the evaporation of precipitation: A GEWEX cloud system study. Mon. Wea. Rev., 125 , 14311446.

    • Search Google Scholar
    • Export Citation
  • Keyser, D., 1986: Atmospheric fronts: An observational perspective. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 216–258.

    • Search Google Scholar
    • Export Citation
  • Knievel, J. C., 2001: The kinematics and thermodynamics of a midlatitude, continental mesoscale convective system and its mesoscale vortex. Ph.D. dissertation, Colorado State University, 99 pp. [Available from the Dept. of Atmospheric Science, Colorado State University, Fort Collins, CO 80523-1371.].

    • Search Google Scholar
    • Export Citation
  • LaDue, J. G., 2002: The structure of a tornadic bow echo in Idaho. Preprints, 21st Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 490–493.

    • Search Google Scholar
    • Export Citation
  • Lafore, J-P., and M. W. Moncrieff, 1989: A numerical investigation of the organization and interaction of the convective and stratiform regions of tropical squall lines. J. Atmos. Sci., 46 , 521544.

    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., M. T. Stoelinga, and P. V. Hobbs, 1998: Structure and evolution of winter cyclones in the central United States and their effects on the distribution of precipitation. Part V: Thermodynamic and dual-Doppler radar analysis of a squall line associated with a cold front aloft. Mon. Wea. Rev., 126 , 860875.

    • Search Google Scholar
    • Export Citation
  • McMillan, G. D., 1981: SNOTEL: A management tool for the future. Proc. 49th Western Snow Conf., St. George, UT, Western Snow Conference, 116–119.

    • Search Google Scholar
    • Export Citation
  • Mitsuta, Y., T. Hayashi, T. Takemi, Y. Hu, J. Wang, and M. Chen, 1995: Two severe local storms as observed in the arid area of northwest China. J. Meteor. Soc. Japan, 73 , 12691284.

    • Search Google Scholar
    • Export Citation
  • Moller, A. R., 2001: Severe local storms forecasting. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 433–480.

  • Moncrieff, M. W., 1989: Analytical models of narrow cold-frontal rainbands and related phenomena. J. Atmos. Sci., 46 , 150162.

  • NCDC, 2000: Storm Data. Vol. 42, No. 2, 127 pp.

  • Oliver, V. J., and G. C. Holzworth, 1953: Some effects of the evaporation of widespread precipitation on the production of fronts and on changes in frontal slopes and motion. Mon. Wea. Rev., 81 , 141151.

    • Search Google Scholar
    • Export Citation
  • Parker, D. J., and A. J. Thorpe, 1995: The role of snow sublimation in frontogenesis. Quart. J. Roy. Meteor. Soc., 121 , 763782.

  • Parker, M. D., and R. H. Johnson, 2000: Organizational modes of midlatitude mesoscale convective systems. Mon. Wea. Rev., 128 , 34133436.

    • Search Google Scholar
    • Export Citation
  • Parker, M. D., and R. H. Johnson, 2003a: Structure and dynamics of quasi-2D mesoscale convective systems. J. Atmos. Sci., submitted.

  • Parker, M. D., and R. H. Johnson, 2003b: Simulated convective lines with leading precipitation. Part I: Governing dynamics. J. Atmos. Sci., submitted.

    • Search Google Scholar
    • Export Citation
  • Parker, M. D., and R. H. Johnson, 2003c: Simulated convective lines with leading precipitation. Part II: Evolution and maintenance. J. Atmos. Sci., submitted.

    • Search Google Scholar
    • Export Citation
  • Parsons, D. B., 1992: An explanation for intense frontal updrafts and narrow cold-frontal rainbands. J. Atmos. Sci., 49 , 18101825.

  • Pliske, R., B. Crandall, and G. Klein, 2003: Competence in weather forecasting. Psychological Investigations of Competent Decision Making, J. Shanteau et al., Eds., Cambridge University Press, in press.

    • Search Google Scholar
    • Export Citation
  • Rust, W. D., R. Davies-Jones, D. W. Burgess, R. A. Maddox, L. C. Showell, T. C. Marshall, and D. K. Lauritsen, 1990: Testing a mobile version of a Cross-chain Loran Atmospheric Sounding System (M-CLASS). Bull. Amer. Meteor. Soc., 71 , 173180.

    • Search Google Scholar
    • Export Citation
  • Ryan, B. F., K. J. Wilson, and E. J. Zipser, 1989: Modification of the thermodynamic structure of the lower troposphere by the evaporation of precipitation ahead of a cold front. Mon. Wea. Rev., 117 , 138153.

    • Search Google Scholar
    • Export Citation
  • Sanders, F., 1999a: A proposed method of surface map analysis. Mon. Wea. Rev., 127 , 945955.

  • Sanders, F., 1999b: A short-lived cold front in the southwestern United States. Mon. Wea. Rev., 127 , 23952403.

  • Sanders, F., and C. A. Doswell III, 1995: A case for detailed surface analysis. Bull. Amer. Meteor. Soc., 76 , 505521.

  • Saucier, W. J., 1955: Principles of Meteorological Analysis. The University of Chicago Press, 438 pp.

  • Sawyer, J. S., 1946: Cooling by rain as a cause of the pressure rise in convectional squalls. Quart. J. Roy. Meteor. Soc., 72 , 168.

  • Schultz, D. M., and W. J. Steenburgh, 1999: The formation of a forward-tilting cold front with multiple cloud bands during Superstorm 1993. Mon. Wea. Rev., 127 , 11081124.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., and Coauthors. 2002: Understanding Utah winter storms: The Intermountain Precipitation Experiment. Bull. Amer. Meteor. Soc., 83 , 189210.

    • Search Google Scholar
    • Export Citation
  • Schumacher, P. N., D. J. Knight, and L. F. Bosart, 1996: Frontal interaction with the Appalachian Mountains. Part I: A climatology. Mon. Wea. Rev., 124 , 24532468.

    • Search Google Scholar
    • Export Citation
  • Shapiro, A., 1992: A hydrodynamical model of shear flow over semi-infinite barriers with application to density currents. J. Atmos. Sci., 49 , 22932305.

    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., 1984: Meteorological tower measurements of a surface cold front. Mon. Wea. Rev., 112 , 16341639.

  • Simpson, J. E., 1997: Gravity Currents in the Environment and the Laboratory. 2d ed. Cambridge University Press, 244 pp.

  • Smith, R. K., and M. J. Reeder, 1988: On the movement and low-level structure of cold fronts. Mon. Wea. Rev., 116 , 19271944.

  • Steenburgh, W. J., 2003: One hundred inches in one hundred hours—Evolution of a Wasatch Mountain winter storm cycle. Wea. Forecasting, in press.

    • Search Google Scholar
    • Export Citation
  • Steenburgh, W. J., and T. R. Blazek, 2001: Topographic distortion of a cold front over the Snake River Plain and central Idaho mountains. Wea. Forecasting, 16 , 301314.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., R. A. Maddox, and C. L. Ziegler, 1991: A sublimation-initiated mesoscale downdraft and its relation to the wind field below a precipitating anvil cloud. Mon. Wea. Rev., 119 , 21242139.

    • Search Google Scholar
    • Export Citation
  • Stumpf, G. J., R. H. Johnson, and B. F. Small, 1991: The wake low in a midlatitude mesoscale convective system having complex convective organization. Mon. Wea. Rev., 119 , 134158.

    • Search Google Scholar
    • Export Citation
  • Sun, J., S. Braun, M. I. Biggerstaff, R. G. Fovell, and R. A. Houze Jr., 1993: Warm upper-level downdrafts associated with a squall line. Mon. Wea. Rev., 121 , 29192927.

    • Search Google Scholar
    • Export Citation
  • Takemi, T., 1999: Structure and evolution of a severe squall line over the arid region in northwest China. Mon. Wea. Rev., 127 , 13011309.

    • Search Google Scholar
    • Export Citation
  • Thorpe, A. J., M. J. Miller, and M. W. Moncrieff, 1982: Two-dimensional convection in non-constant shear: A model of mid-latitude squall lines. Quart. J. Roy. Meteor. Soc., 108 , 739762.

    • Search Google Scholar
    • Export Citation
  • Tory, K. J., and M. J. Reeder, 1996: A numerical study of the influence of a diurnally forced planetary boundary-layer on dry frontogenesis. Preprints, Seventh Conf. on Mesoscale Processes, Reading, United Kingdom, Amer. Meteor. Soc., 517–519.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., and C. A. Doswell III, 2000: Radar data objective analysis. J. Atmos. Oceanic Technol., 17 , 105120.

  • Weisman, M. L., J. B. Klemp, and R. Rotunno, 1988: Structure and evolution of numerically simulated squall lines. J. Atmos. Sci., 45 , 19902013.

    • Search Google Scholar
    • Export Citation
  • Williams Jr., P., 1972: Western Region synoptic analysis—Problems and methods. NOAA NWS Western Region Tech. Memo. NWSTM WR-71, 71 pp. [Available from NOAA NWS Western Region Headquarters, 125 S. State Street, Rm. 1311, Salt Lake City, UT 84138-1102.].

    • Search Google Scholar
    • Export Citation
  • Williams Jr., P., and E. L. Peck, 1962: Terrain influences on precipitation in the Intermountain West as related to synoptic situations. J. Appl. Meteor., 1 , 343347.

    • Search Google Scholar
    • Export Citation
  • Williams, S. F., C. G. Wade, and C. Morel, 1993: A comparison of high resolution radiosonde winds: 6-second Micro-ART winds versus 10-second CLASS Loran winds. Preprints, Eighth Symp. on Meteorological Observations and Instrumentation, Anaheim, CA, Amer. Meteor. Soc., 60–65.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., J. Straka, E. Rasmussen, M. Randall, and A. Zahrai, 1997: Design and deployment of a portable, pencil-beam, pulsed, 3-cm Doppler radar. J. Atmos. Oceanic Technol., 14 , 15021512.

    • Search Google Scholar
    • Export Citation
  • Zehnder, J. A., and P. R. Bannon, 1988: Frontogenesis over a mountain ridge. J. Atmos. Sci., 45 , 628644.

  • Zipser, E. J., 1969: The role of organized unsaturated convective downdrafts in the structure and rapid decay of an equatorial disturbance. J. Appl. Meteor., 8 , 799814.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 1977: Mesoscale and convective-scale downdrafts as distinct components of squall-line structure. Mon. Wea. Rev., 105 , 15681589.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 556 297 14
PDF Downloads 165 62 3