A Numerical Study of a Nontornadic Supercell over France

Katia Chancibault GAME/CNRM (Météo-France, CNRS), Toulouse, France

Search for other papers by Katia Chancibault in
Current site
Google Scholar
PubMed
Close
,
Véronique Ducrocq GAME/CNRM (Météo-France, CNRS), Toulouse, France

Search for other papers by Véronique Ducrocq in
Current site
Google Scholar
PubMed
Close
, and
Jean-Philippe Lafore GAME/CNRM (Météo-France, CNRS), Toulouse, France

Search for other papers by Jean-Philippe Lafore in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A case of a nontornadic supercell over France is simulated with a three-dimensional nonhydrostatic cloud model. The simulation starts from an operational data analysis without any superimposed perturbation. The initial convective cell is triggered by a mesoscale convergence line associated with a preexisting thermal boundary. The model succeeds in simulating right- and left-moving storms arising from a splitting process of the initial convective cell. The right-moving storm exhibits the characteristics of a supercell with a hooklike structure in the precipitation field, a midlevel rotating updraft, and a low-level cyclonic vortex.

A vorticity budget analysis is performed along backward parcel trajectories for the initial storm and for the supercell phases, with emphasis on the impacts of the preexisting thermal boundary and the associated low-level variations of shear. Similar mechanisms as those found for the cases over homogeneous environment operate globally. Indeed, the simulation exhibits a couplet of cyclonic and anticyclonic vortex on the flanks of the updraft leading to the split of the initial storm. The supercell derives its low-level cyclonic vorticity from tilting of baroclinically produced horizontal vorticity within the storm's forward flank region. Nevertheless, some differences in the rotational characteristics and in the formation of the initial cell arise from the heterogeneous environment compared to those of homogeneous environment. The vorticity analysis shows that the veering with height of the cyclonic and anticyclonic vertical vorticity cores at midlevels is not symmetric due to the heterogeneous field. It is also found that an additional mechanism operates in the low-level cyclonic vertical vorticity generation.

Corresponding author address: V. Ducrocq, CNRM/GMME/MICADO, Météo-France, 42 Av. Coriolis, 31057 Toulouse Cedex 1, France. Email: veronique.ducrocq@meteo.fr

Abstract

A case of a nontornadic supercell over France is simulated with a three-dimensional nonhydrostatic cloud model. The simulation starts from an operational data analysis without any superimposed perturbation. The initial convective cell is triggered by a mesoscale convergence line associated with a preexisting thermal boundary. The model succeeds in simulating right- and left-moving storms arising from a splitting process of the initial convective cell. The right-moving storm exhibits the characteristics of a supercell with a hooklike structure in the precipitation field, a midlevel rotating updraft, and a low-level cyclonic vortex.

A vorticity budget analysis is performed along backward parcel trajectories for the initial storm and for the supercell phases, with emphasis on the impacts of the preexisting thermal boundary and the associated low-level variations of shear. Similar mechanisms as those found for the cases over homogeneous environment operate globally. Indeed, the simulation exhibits a couplet of cyclonic and anticyclonic vortex on the flanks of the updraft leading to the split of the initial storm. The supercell derives its low-level cyclonic vorticity from tilting of baroclinically produced horizontal vorticity within the storm's forward flank region. Nevertheless, some differences in the rotational characteristics and in the formation of the initial cell arise from the heterogeneous environment compared to those of homogeneous environment. The vorticity analysis shows that the veering with height of the cyclonic and anticyclonic vertical vorticity cores at midlevels is not symmetric due to the heterogeneous field. It is also found that an additional mechanism operates in the low-level cyclonic vertical vorticity generation.

Corresponding author address: V. Ducrocq, CNRM/GMME/MICADO, Météo-France, 42 Av. Coriolis, 31057 Toulouse Cedex 1, France. Email: veronique.ducrocq@meteo.fr

Save
  • Achtemeier, G. L., 1969: Some observations of splitting thunderstorms over Iowa on August 25–26, 1965. Preprints, Sixth Conf. on Severe Local Storms, Chicago, IL, Amer. Meteor. Soc., 89–94.

    • Search Google Scholar
    • Export Citation
  • Atkins, N. T., M. L. Weisman, and L. J. Wicker, 1999: The influence of preexisting boundaries on supercell evolution. Mon. Wea. Rev., 127 , 29102927.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., E. Bazile, F. Guichard, P. Mascard, and E. Richard, 2001: A mass flux convection scheme for regional and global models. Quart. J. Roy. Meteor. Soc., 127 , 869886.

    • Search Google Scholar
    • Export Citation
  • Bougeault, P., and P. Lacarrre, 1989: Parameterization of orography-induced turbulence in a mesobeta-scale model. Mon. Wea. Rev., 117 , 18701888.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1964: Airflow and precipitation trajectories within severe local storms which travel to the right of the winds. J. Atmos. Sci., 21 , 634639.

    • Search Google Scholar
    • Export Citation
  • Burgess, D. W., R. J. Donaldson, and P. R. Desrochers, 1993: Tornado detection and warning by radar. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 203–221.

    • Search Google Scholar
    • Export Citation
  • Calas, C., V. Ducrocq, and S. Sénési, 2000: Mesoscale analyses and diagnostic parameters for deep convection nowcasting. Meteor. Appl., 7 , 143161.

    • Search Google Scholar
    • Export Citation
  • Caniaux, G., J-L. Redelsperger, and J-P. Lafore, 1994: A numerical study of the stratiform region of a fast-moving squall line. J. Atmos. Sci., 51 , 20462074.

    • Search Google Scholar
    • Export Citation
  • Chancibault, K., 2002: Numerical study of supercell thunderstorms over France (in French). Ph.D. thesis, University Paul Sabatier of Toulouse, 206 pp.

    • Search Google Scholar
    • Export Citation
  • Clark, T. L., and R. D. Farley, 1984: Severe downslope windstorm calculations in two and three spatial dimensions using anelastic interactive grid nesting: A possible mechanism for gustiness. J. Atmos. Sci., 41 , 329350.

    • Search Google Scholar
    • Export Citation
  • Cuxart, J., P. Bougeault, and J. L. Redelsperger, 2000: A multiscale turbulence scheme apt for LES and mesoscale modelling. Quart. J. Roy. Meteor. Soc., 126 , 130.

    • Search Google Scholar
    • Export Citation
  • Davies, J. M., and R. H. Johns, 1993: Some wind and instability parameters associated with strong and violent tornadoes. Part I: Wind shear and helicity. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 573–582.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., 1984: Streamwise vorticity: The origin of updraft rotation in supercell storms. J. Atmos. Sci., 41 , 29913006.

  • Davies-Jones, R. P., and H. E. Brooks, 1993: Mesocyclogenesis from a theoretical perspective. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 105–114.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., D. W. Burgess, and M. Foster, 1990: Test of helicity as a forecast parameter. Preprints, 16th Conf. on Severe Local Storms, Kananaskis Park, AB, Canada, Amer. Meteor. Soc., 588–592.

    • Search Google Scholar
    • Export Citation
  • Dessens, J., and J. T. Snow, 1989: Tornadoes in France. Wea. Forecasting, 4 , 110132.

  • Dessens, J., and J. T. Snow, 1993: Comparative description of tornadoes in France and the United States. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 427–434.

    • Search Google Scholar
    • Export Citation
  • Fujita, T., and H. Grandoso, 1968: Split of a thunderstorm into anticyclonic and cyclonic storms and their motion as determined from numerical model experiments. J. Atmos. Sci., 25 , 416439.

    • Search Google Scholar
    • Export Citation
  • Gal-Chen, T., and R. C. J. Sommerville, 1975: On the use of a coordinate transformation for the solution of the Navier–Stokes equations. J. Comput. Phys., 17 , 209228.

    • Search Google Scholar
    • Export Citation
  • Gheusi, F., and J. Stein, 2002: Lagrangian description of air flows using Eulerian passive tracers. Quart. J. Roy. Meteor. Soc., 128 , 337360.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., W. Schmidt, R. G. Fovell, and H. H. Schiesser, 1993: Hailstorms in Switzerland: Left movers, right movers, and false hooks. Mon. Wea. Rev., 121 , 33453370.

    • Search Google Scholar
    • Export Citation
  • Johnson, D. E., P. K. Wang, and J. M. Straka, 1993: Numerical simulations of the 2 August 1981 CCOPE supercell storm with and without ice microphysics. J. Appl. Meteor., 32 , 745759.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterizations. J. Atmos. Sci., 47 , 27842802.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., 1987: Dynamics of tornadic thunderstorms. Annu. Rev. Fluid Mech., 19 , 369402.

  • Klemp, J. B., and R. B. Wilhelmson, 1978: Simulations of right- and left-moving storms produced through storm splitting. J. Atmos. Sci., 35 , 10971110.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. Rotunno, 1983: A study of the tornadic region within a supercell thunderstorm. J. Atmos. Sci., 40 , 359377.

  • Klemp, J. B., R. B. Wilhelmson, and P. S. Ray, 1981: Observed and numerically simulated structure of a mature supercell thunderstorm. J. Atmos. Sci., 38 , 15581580.

    • Search Google Scholar
    • Export Citation
  • Klinker, E., F. Rabier, G. Kelly, and J-F. Mahfouf, 2000: The ECMWF operational implementation of four-dimensional variational assimilation. Part III: Experimental results and diagnostics with operational configuration. Quart. J. Roy. Meteor. Soc., 126 , 11911216.

    • Search Google Scholar
    • Export Citation
  • Lafore, J. P., and Coauthors. 1998: The Meso-NH atmospheric simulation system. Part I: Adiabatic formulation and control simulations. Ann. Geophys., 16 , 90109.

    • Search Google Scholar
    • Export Citation
  • Lemon, L. R., and C. A. Doswell, 1979: Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis. Mon. Wea. Rev., 107 , 11841197.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., E. N. Rasmussen, and J. M. Straka, 1998: The occurence of tornadoes in supercells interacting with boundaries during VORTEX-95. Wea. Forecasting, 13 , 852859.

    • Search Google Scholar
    • Export Citation
  • Pinty, J. P., and P. Jabouille, 1998: A mixed-phased cloud parameterization for use in a mesoscale non-hydrostatic model: Simulations of a squall line and of orographic precipitation. Preprints, Conf. on Cloud Physics, Everett, WA, Amer. Meteor. Soc., 217–220.

    • Search Google Scholar
    • Export Citation
  • Rabier, F., H. Jarvinen, E. Klinker, J-F. Mahfouf, and A. Simmons, 2000: The ECMWF operational implementation of four-dimensional variational assimilation. Part I: Experimental results with simplified physics. Quart. J. Roy. Meteor. Soc., 126 , 11431170.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., and D. O. Blanchard, 1998: A baseline climatology of sounding-derived supercell and tornado forecast parameters. Wea. Forecasting, 13 , 11481164.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., S. Richardson, J. M. Straka, P. M. Markowski, and D. O. Blanchard, 2000: The association of significant tornadoes with a baroclinic boundary on 2 June 1995. Mon. Wea. Rev., 128 , 174191.

    • Search Google Scholar
    • Export Citation
  • Redelsperger, J. L., and G. Sommeria, 1981: Méthode de représentation de la turbulence d'échelle inférieure à la maille pour un modèle tri-dimensionnel de convection nuageuse. Bound.-Layer Meteor., 21 , 509530.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., 1981: On the evolution of thunderstorm rotation. Mon. Wea. Rev., 109 , 171180.

  • Rotunno, R., and J. B. Klemp, 1982: The influence of the shear-induced pressure gradient on thunderstorm motion. Mon. Wea. Rev., 110 , 136151.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and J. B. Klemp, 1985: On the rotation and propagation of simulated supercell thunderstorms. J. Atmos. Sci., 42 , 271292.

    • Search Google Scholar
    • Export Citation
  • Stein, J., E. Richard, J. P. Lafore, J. P. Pinty, N. Asencio, and S. Cosma, 2000: High-resolution non-hydrostatic simulations of flash-flood episodes with grid-nesting and ice-phase parameterization. Meteor. Atmos. Phys., 72 , 203221.

    • Search Google Scholar
    • Export Citation
  • Tartaglione, N., A. Buzzi, and M. Fantini, 1996: Supercell simulations with a simple ice parameterization. Meteor. Atmos. Phys., 58 , 139149.

    • Search Google Scholar
    • Export Citation
  • Thépaut, J-N., and Coauthors. 1998: The operational global data assimilation system at Météo-France. Proc. HIRLAM 4 Workshop on Variational Analysis in Limited Area Models, Toulouse, France, CNRM, 25–31.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and H. Cai, 2000: Analysis of a nontornadic storm during VORTEX-95. Mon. Wea. Rev., 128 , 565592.

  • Wakimoto, R. M., C. H. Liu, and H. Cai, 1998: The Garden City, Kansas, storm during VORTEX-95. Part I: Overview of the storm's life cycle and mesocyclogenesis. Mon. Wea. Rev., 126 , 372392.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and R. Rotunno, 2000: The use of vertical wind shear versus helicity in interpreting supercell dynamics. J. Atmos. Sci., 57 , 14521472.

    • Search Google Scholar
    • Export Citation
  • Wilhelmson, R. B., and J. B. Klemp, 1978: A numerical study of storm splitting that leads to long-lived storms. J. Atmos. Sci., 35 , 19741986.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and W. E. Schreiber, 1986: Initiation of convective storms at radar-observed boundary-layer convergence lines. Mon. Wea. Rev., 114 , 25162536.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 94 27 5
PDF Downloads 55 32 3