Simulating the Transition from Drizzling Marine Stratocumulus to Boundary Layer Cumulus with a Mesoscale Model

David B. Mechem Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

Search for other papers by David B. Mechem in
Current site
Google Scholar
PubMed
Close
and
Yefim L. Kogan Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

Search for other papers by Yefim L. Kogan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A case of coastal California summer season boundary layer cloud has been simulated with the U.S. Navy Coupled Ocean–Atmosphere Mesoscale Prediction System and the results analyzed in the context of consistency with conclusions derived from large eddy simulation–based (LES) studies. Results show a pronounced diurnal cycle and fair agreement with satellite-derived observations of liquid water path. When drizzle processes are included, a significant degree of mesoscale organization emerges in the form of cloud bands, accompanied by a transition from a well-mixed boundary layer topped by unbroken stratocumulus cloud into a more potentially unstable, convective boundary layer regime. The transition and the subsequent development of mesoscale variability is analogous to the drizzle-induced cloud breakup produced in large eddy simulation studies. The dynamics of the pure stratocumulus cloud are dictated by the model's subgrid parameterization, while the more convective regime exhibits appreciable vertical velocities characteristic of an ensemble of cumulus updrafts. The existence of convective updrafts is tied to a weak drizzle-induced decoupling of the cloud and subcloud layer, after which air of higher equivalent potential temperature (θe) can pool at the surface. Some similarities to the propagation of deep convection are also noted.

Corresponding author address: David B. Mechem, CIMMS, University of Oklahoma, 100 E. Boyd, Room 1110, Norman, OK 73019-1011. Email: dmechem@ou.edu

Abstract

A case of coastal California summer season boundary layer cloud has been simulated with the U.S. Navy Coupled Ocean–Atmosphere Mesoscale Prediction System and the results analyzed in the context of consistency with conclusions derived from large eddy simulation–based (LES) studies. Results show a pronounced diurnal cycle and fair agreement with satellite-derived observations of liquid water path. When drizzle processes are included, a significant degree of mesoscale organization emerges in the form of cloud bands, accompanied by a transition from a well-mixed boundary layer topped by unbroken stratocumulus cloud into a more potentially unstable, convective boundary layer regime. The transition and the subsequent development of mesoscale variability is analogous to the drizzle-induced cloud breakup produced in large eddy simulation studies. The dynamics of the pure stratocumulus cloud are dictated by the model's subgrid parameterization, while the more convective regime exhibits appreciable vertical velocities characteristic of an ensemble of cumulus updrafts. The existence of convective updrafts is tied to a weak drizzle-induced decoupling of the cloud and subcloud layer, after which air of higher equivalent potential temperature (θe) can pool at the surface. Some similarities to the propagation of deep convection are also noted.

Corresponding author address: David B. Mechem, CIMMS, University of Oklahoma, 100 E. Boyd, Room 1110, Norman, OK 73019-1011. Email: dmechem@ou.edu

Save
  • Albrecht, B. A., 1989: Aerosol, cloud microphysics, and fractional cloudiness. Science, 245 , 12271230.

  • Albrecht, B. A., D. A. Randall, and S. Nicholls, 1988: Observations of marine stratocumulus clouds during FIRE. Bull. Amer. Meteor. Soc., 69 , 618626.

    • Search Google Scholar
    • Export Citation
  • Austin, P., Y. Wang, R. Pincus, and V. Kujala, 1995: Precipitation in stratocumulus clouds: Observational and modeling results. J. Atmos. Sci., 52 , 23292352.

    • Search Google Scholar
    • Export Citation
  • Baker, M. B., 1993: Variability in concentrations of cloud condensation nuclei in the marine cloud-topped boundary layer. Tellus, 45B , 458472.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and M. C. Wyant, 1997: Moisture transport, lower tropospheric stability, and decoupling of cloud-topped boundary layers. J. Atmos. Sci., 54 , 148167.

    • Search Google Scholar
    • Export Citation
  • Chen, C., and W. R. Cotton, 1987: The physics of the marine stratocumulus-capped mixed layer. J. Atmos. Sci., 44 , 29512977.

  • Feingold, G., B. Stevens, W. R. Cotton, and A. S. Frisch, 1996: The relationship between drop in-cloud residence time and drizzle production in numerically simulated stratocumulus clouds. J. Atmos. Sci., 53 , 11081122.

    • Search Google Scholar
    • Export Citation
  • Fiedler, B. H., 1984: The mesoscale stability of entrainment into cloud-topped mixed layers. J. Atmos. Sci., 41 , 92101.

  • Hodur, R. M., 1997: The Naval Research Laboratory's Coupled Ocean/Atmosphere Mesoscale Prediction System. Mon. Wea. Rev., 125 , 14141430.

    • Search Google Scholar
    • Export Citation
  • Jensen, J. B., S. Lee, P. B. Krummel, J. Katzfey, and D. Gagoasa, 2000: Precipitation in marine cumulus and stratocumulus. Part I: Thermodynamic and dynamic observations of closed cell circulations and cumulus bands. Atmos. Res., 54 , 117155.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., G. Feingold, and W. R. Cotton, 2002: Simulations of aerosol-cloud-dynamical feedbacks resulting from entrainment of aerosol into the marine boundary layer during the Atlantic Stratocumulus Transition Experiment. J. Geophys. Res., 107 , 4813. , doi:10.1029/2001JD001502.

    • Search Google Scholar
    • Export Citation
  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulation. Meteor. Monogr.,. No. 32, Amer. Meteor. Soc., 84 pp.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., and Y. L. Kogan, 1999: A large eddy simulation model with explicit microphysics: Validation against aircraft observations of a stratocumulus-topped boundary layer. J. Atmos. Sci., 56 , 21152131.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., and Y. L. Kogan, 2000: A new cloud physics parameterization for large-eddy simulation model of marine stratocumulus. Mon. Wea. Rev., 128 , 229243.

    • Search Google Scholar
    • Export Citation
  • Kogan, Y. L., M. P. Khairoutdinov, D. K. Lilly, Z. N. Kogan, and Q. Liu, 1995: Modeling of stratocumulus cloud layers in a large eddy simulation model with explicit microphysics. J. Atmos. Sci., 52 , 29232940.

    • Search Google Scholar
    • Export Citation
  • Kong, F., 2002: An experimental simulation of a coastal fog-stratus case using COAMPS model. Atmos. Res., 64 , 205215.

  • Krueger, S. K., G. T. McLean, and Q. Fu, 1995: Numerical simulation of the stratus-to-cumulus transition in the subtropical marine boundary layer. Part I: Boundary-layer structure. J. Atmos. Sci., 52 , 28392850.

    • Search Google Scholar
    • Export Citation
  • Lewellen, D. C., and W. S. Lewellen, 2002: Entrainment and decoupling relations for cloudy boundary layers. J. Atmos. Sci., 59 , 29662986.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1968: Models of cloud-topped mixed layers under a strong inversion. Quart. J. Roy. Meteor. Soc., 94 , 292309.

  • Martin, G. M., D. W. Johnson, and A. Spice, 1994: The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds. J. Atmos. Sci., 51 , 18231842.

    • Search Google Scholar
    • Export Citation
  • McCaa, J. R., and C. S. Bretherton, 2003a: A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. Part I: Description and 1-D results. Mon. Wea. Rev., submitted.

    • Search Google Scholar
    • Export Citation
  • McCaa, J. R., and C. S. Bretherton, 2003b: A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. Part II: Regional simulations of marine boundary layer clouds. Mon. Wea. Rev., submitted.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20 , 851875.

    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., L. D. Travis, W. B. Rossow, B. Cairns, B. E. Carlson, and Q. Han, 1997: Retrieving CCN column density from single-channel measurements of reflected sunlight over the ocean: A sensitivity study. Geophys. Res. Lett., 24 , 26552658.

    • Search Google Scholar
    • Export Citation
  • Mocko, D. M., and W. R. Cotton, 1995: Evaluation of fractional cloudiness parameterizations for use in a mesoscale model. J. Atmos. Sci., 52 , 28842901.

    • Search Google Scholar
    • Export Citation
  • Moeng, C-H., 1986: Large-eddy simulation of a stratus-topped boundary layer. Part I: Structure and budgets. J. Atmos. Sci., 43 , 28862900.

    • Search Google Scholar
    • Export Citation
  • Moeng, C-H., and Coauthors. 1996: Simulation of a stratocumulus-topped boundary layer: Intercomparison among different numerical codes. Bull. Amer. Meteor. Soc., 77 , 261278.

    • Search Google Scholar
    • Export Citation
  • O'Dowd, C. D., M. H. Smith, A. D. Kaye, and J. Lowe, 1996: The relative importance of NSS-sulphate and sea-salt aerosol to the marine CCN population. Proc. 12th Int. Conf. on Clouds and Precipitation, Zurich, Switzerland, International Commission on Clouds and Precipitation, 334–337.

    • Search Google Scholar
    • Export Citation
  • Paluch, I. R., and D. H. Lenschow, 1991: Stratiform cloud formation in the marine boundary layer. J. Atmos. Sci., 48 , 21412158.

  • Rand, H. A., and C. S. Bretherton, 1993: Relevance of the mesoscale entrainment instability to the marine cloud-topped atmospheric boundary layer. J. Atmos. Sci., 50 , 11521158.

    • Search Google Scholar
    • Export Citation
  • Rothermel, J., and E. M. Agee, 1980: Aircraft investigation of mesoscale cellular convection during AMTEX 75. J. Atmos. Sci., 37 , 10271040.

    • Search Google Scholar
    • Export Citation
  • Shao, Q., and D. A. Randall, 1996: Closed mesoscale cellular convection driven by cloud-top radiative cooling. J. Atmos. Sci., 53 , 21442165.

    • Search Google Scholar
    • Export Citation
  • Slingo, A., 1990: Sensitivity of the earth's radiation budget to changes in low clouds. Nature, 343 , 4951.

  • Stevens, B., 2000: Cloud transitions and decoupling in shear-free stratocumulus-topped boundary layers. Geophys. Res. Lett., 27 , 25572560.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., W. R. Cotton, G. Feingold, and C-H. Moeng, 1998: Large-eddy simulations of strongly precipitating, shallow, stratocumulus-topped boundary layers. J. Atmos. Sci., 55 , 36163638.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., C-H. Moeng, and P. P. Sullivan, 1999: Large-eddy simulations of radiatively driven convection: Sensitivities to the representation of small scales. J. Atmos. Sci., 56 , 39633984.

    • Search Google Scholar
    • Export Citation
  • Turton, J. D., and S. Nicholls, 1987: A study of the diurnal variation of stratocumulus using a multiple mixed layer model. Quart. J. Roy. Meteor. Soc., 113 , 9691009.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1977: The influence of pollution on the short wave albedo of clouds. J. Atmos. Sci., 34 , 11491152.

  • Wang, S., 1993: Modeling marine boundary-layer clouds with a two-layer model: A one-dimensional simulation. J. Atmos. Sci., 50 , 40014021.

    • Search Google Scholar
    • Export Citation
  • Wang, S., and Q. Wang, 1994: Roles of drizzle in a one-dimensional third-order turbulence closure model of the nocturnal stratus-topped marine boundary layer. J. Atmos. Sci., 51 , 15591576.

    • Search Google Scholar
    • Export Citation
  • Wang, S., B. A. Albrecht, and P. Minnis, 1993: A regional simulation of marine boundary-layer clouds. J. Atmos. Sci., 50 , 40224043.

  • Wentz, F. J., 1989: User's manual for SSM/I antenna temperature tapes. Remote Sensing Systems Tech. Rep. 032588, Remote Sensing Systems, Santa Rosa, CA, 36 pp.

    • Search Google Scholar
    • Export Citation
  • Wood, R., 2000: The validation of drizzle parameterizations using aircraft data. Proc. 13th Int. Conf. on Clouds and Precipitation, Reno, NV, International Commission on Clouds and Precipitation, 530–533.

    • Search Google Scholar
    • Export Citation
  • Wood, R., C. S. Bretherton, and D. L. Hartmann, 2002: Diurnal cycle of liquid water path over the subtropical and tropical oceans. Geophys. Res. Lett., 29 .2092, doi:10.1029/2002GL015371.

    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., C. S. Bretherton, H. A. Rand, and D. E. Stevens, 1997: Numerical simulations and a conceptual model of the stratocumulus to trade cumulus transition. J. Atmos. Sci., 54 , 168192.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and R. A. Houze Jr., 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123 , 19411963.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 369 52 9
PDF Downloads 89 37 8