Characteristics of Sprite-Producing Positive Cloud-to-Ground Lightning during the 19 July 2000 STEPS Mesoscale Convective Systems

Walter A. Lyons Yucca Ridge Field Station, FMA Research, Inc., Fort Collins, Colorado

Search for other papers by Walter A. Lyons in
Current site
Google Scholar
PubMed
Close
,
Thomas E. Nelson Yucca Ridge Field Station, FMA Research, Inc., Fort Collins, Colorado

Search for other papers by Thomas E. Nelson in
Current site
Google Scholar
PubMed
Close
,
Earle R. Williams Parsons Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Earle R. Williams in
Current site
Google Scholar
PubMed
Close
,
Steven A. Cummer Department of Electrical Engineering, Duke University, Durham, North Carolina

Search for other papers by Steven A. Cummer in
Current site
Google Scholar
PubMed
Close
, and
Mark A. Stanley NIS-1, Los Alamos National Laboratory, Los Alamos, New Mexico

Search for other papers by Mark A. Stanley in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

During the summer of 2000, the Severe Thunderstorm Electrification and Precipitation Study (STEPS) program deployed a three-dimensional Lightning Mapping Array (LMA) near Goodland, Kansas. Video confirmation of sprites triggered by lightning within storms traversing the LMA domain were coordinated with extremely low frequency (ELF) transient measurements in Rhode Island and North Carolina. Two techniques of estimating changes in vertical charge moment (Mq) yielded averages of ∼800 and ∼950 C km for 13 sprite-parent positive polarity cloud-to-ground strokes (+CGs). Analyses of the LMA's very high frequency (VHF) lightning emissions within the two mesoscale convective systems (MCSs) show that +CGs did not produce sprites until the centroid of the maximum density of lightning radiation emissions dropped from the upper part of the storm (7–11.5 km AGL) to much lower altitudes (2–5 km AGL). The average height of charge removal (Zq) from 15 sprite-parent +CGs during the late mature phase of one MCS was 4.1 km AGL. Thus, the total charges lowered by sprite-parent +CGs were on the order of 200 C. The regional 0°C isotherm was located at about 4.0 km AGL. This suggests a possible linkage between sprite-parent CGs and melting-layer/brightband charge production mechanisms in MCS stratiform precipitation regions. These cases are supportive of the conceptual MCS sprite-production models previously proposed by two of the authors (Lyons and Williams).

Corresponding author address: Walter A. Lyons, FMA Research, Inc., Yucca Ridge Field Station, 46050 Weld County Road 13, Fort Collins, CO 80524. Email: walyons@frii.com

Abstract

During the summer of 2000, the Severe Thunderstorm Electrification and Precipitation Study (STEPS) program deployed a three-dimensional Lightning Mapping Array (LMA) near Goodland, Kansas. Video confirmation of sprites triggered by lightning within storms traversing the LMA domain were coordinated with extremely low frequency (ELF) transient measurements in Rhode Island and North Carolina. Two techniques of estimating changes in vertical charge moment (Mq) yielded averages of ∼800 and ∼950 C km for 13 sprite-parent positive polarity cloud-to-ground strokes (+CGs). Analyses of the LMA's very high frequency (VHF) lightning emissions within the two mesoscale convective systems (MCSs) show that +CGs did not produce sprites until the centroid of the maximum density of lightning radiation emissions dropped from the upper part of the storm (7–11.5 km AGL) to much lower altitudes (2–5 km AGL). The average height of charge removal (Zq) from 15 sprite-parent +CGs during the late mature phase of one MCS was 4.1 km AGL. Thus, the total charges lowered by sprite-parent +CGs were on the order of 200 C. The regional 0°C isotherm was located at about 4.0 km AGL. This suggests a possible linkage between sprite-parent CGs and melting-layer/brightband charge production mechanisms in MCS stratiform precipitation regions. These cases are supportive of the conceptual MCS sprite-production models previously proposed by two of the authors (Lyons and Williams).

Corresponding author address: Walter A. Lyons, FMA Research, Inc., Yucca Ridge Field Station, 46050 Weld County Road 13, Fort Collins, CO 80524. Email: walyons@frii.com

Save
  • Barrington-Leigh, C. P., U. S. Inan, M. Stanley, and S. A. Cummer, 1999: Sprites directly triggered by negative lightning discharges. Geophys. Res. Lett., 26 , 36053608.

    • Search Google Scholar
    • Export Citation
  • Boccippio, D. J., E. R. Williams, W. A. Lyons, I. Baker, and R. Boldi, 1995: Sprites, ELF transients and positive ground strokes. Science, 269 , 10881091.

    • Search Google Scholar
    • Export Citation
  • Brook, M., M. Nakano, P. Krehbiel, and T. Takeuti, 1982: The electrical structure of the Hokuriku winter thunderstorms. J. Geophys. Res., 87 , 12071215.

    • Search Google Scholar
    • Export Citation
  • Cummer, S. A., and M. Stanley, 1999: Submillisecond resolution lightning currents and sprite development: Observations and implications. Geophys. Res. Lett., 26 , 32053208.

    • Search Google Scholar
    • Export Citation
  • Cummer, S. A., and U. S. Inan, 2000: Modeling ELF radio atmospheric propagation and extracting lightning currents from ELF observations. Radio Sci., 35 , 385394.

    • Search Google Scholar
    • Export Citation
  • Cummer, S. A., and and Fullekrug, 2001: Unusually intense continuing current in lightning produces delayed mesospheric breakdown. Geophys. Res. Lett., 28 , 495498.

    • Search Google Scholar
    • Export Citation
  • Cummer, S. A., U. S. Inan, T. F. Bell, and C. P. Barrington-Leigh, 1998: ELF radiation produced by electrical currents in sprites. Geophys. Res. Lett., 25 , 12811284.

    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., M. J. Murphy, E. A. Bardo, W. L. Hiscox, R. B. Pyle, and A. E. Pifer, 1998: A combined TOA/MDF technology upgrade of the U.S. National Lightning Detection Network. J. Geophys. Res., 103 , 90359044.

    • Search Google Scholar
    • Export Citation
  • Franz, R. C., R. J. Nemzek, and J. R. Winckler, 1990: Television image of a large upward electrical discharge above a thunderstorm system. Science, 249 , 4851.

    • Search Google Scholar
    • Export Citation
  • Fukunishi, H., Y. Takahashi, A. Uchida, M. Sera, K. Adachi, and R. Miyasato, 1999: Occurrences of sprites and elves above the Sea of Japan near Hokuriku in winter. Eos, Trans. Amer. Geophys. Union, 80 (46) Abstract F217.

    • Search Google Scholar
    • Export Citation
  • Hardman, S. F., R. L. Dowden, J. B. Brundell, J. L. Bahr, Z. Kawasaki, and C. J. Rodger, 2000: Sprite observations in the Northern Territory of Australia. J. Geophys. Res., 105 , 46894697.

    • Search Google Scholar
    • Export Citation
  • Hu, W., S. Cummer, W. A. Lyons, and T. E. Nelson, 2002: Lightning charge moment changes for the initiation of sprites. Geophys. Res. Lett., 29 .1279, doi:10.1029/2001GL014593.

    • Search Google Scholar
    • Export Citation
  • Huang, E., E. Williams, R. Boldi, S. Heckman, W. Lyons, M. Taylor, T. Nelson, and C. Wong, 1999: Criteria for sprites and elves based on Schumann resonance observations. J. Geophys. Res., 104 , 1694316964.

    • Search Google Scholar
    • Export Citation
  • Koshak, W. J., and E. P. Krider, 1989: Analysis of lightning field changes during active Florida thunderstorms. J. Geophys. Res., 94 , 11651186.

    • Search Google Scholar
    • Export Citation
  • Krehbiel, P. R., R. J. Thomas, W. Rison, T. Hamlin, J. Harlin, and M. Davis, 2000: GPS-based mapping system reveals lightning inside storms. Eos, Trans. Amer. Geophys. Union, 81 , 2125.

    • Search Google Scholar
    • Export Citation
  • Ligda, M. G. H., 1956: The radar observations of lightning. J. Atmos. Terr. Phys., 9 , 329346.

  • Lyons, W. A., 1994: Low-light video observations of frequent luminous structures in the stratosphere above thunderstorms. Mon. Wea. Rev., 122 , 19401946.

    • Search Google Scholar
    • Export Citation
  • Lyons, W. A., 1996: Sprite observations above the U.S. High Plains in relation to their parent thunderstorm systems. J. Geophys. Res., 101 , 2964129652.

    • Search Google Scholar
    • Export Citation
  • Lyons, W. A., and E. R. Williams, 1993: Preliminary investigations of the phenomenology of cloud-to-stratosphere lightning discharges. Preprints, 17th Conf. on Atmospheric Electricity, St. Louis, MO, Amer. Meteor. Soc., 725–732.

    • Search Google Scholar
    • Export Citation
  • Lyons, W. A., M. Uliasz, and T. E. Nelson, 1998: Climatology of large peak current cloud-to-ground lightning flashes in the contiguous United States. Mon. Wea. Rev., 126 , 22172233.

    • Search Google Scholar
    • Export Citation
  • Lyons, W. A., R. A. Armstrong, E. R. Williams, and E. A. Bering, 2000: The hundred year hunt for the sprite. Eos, Trans. Amer. Geophys. Union, 81 , 373377.

    • Search Google Scholar
    • Export Citation
  • Marshall, T. C., and W. D. Rust, 1993: Two types of vertical electrical structures in stratiform precipitation regions of mesoscale convective systems. Bull. Amer. Meteor. Soc., 74 , 21592170.

    • Search Google Scholar
    • Export Citation
  • Marshall, T. C., M. Stolzenburg, and W. D. Rust, 1996: Electric field measurements above mesoscale convective systems. J. Geophys. Res., 101 , 69796996.

    • Search Google Scholar
    • Export Citation
  • Marshall, T. C., M. Stolzenburg, W. D. Rust, E. R. Williams, and R. Boldi, 2001: Positive charge in the stratiform cloud of a mesoscale convective system. J. Geophys. Res., 106 , 11571163.

    • Search Google Scholar
    • Export Citation
  • Mazur, V., X-M. Shao, and P. R. Krehbiel, 1998: “Spider” lightning in intracloud and positive cloud-to-ground flashes. J. Geophys. Res., 103 , 1981119822.

    • Search Google Scholar
    • Export Citation
  • Neubert, T., T. H. Allin, H. Stenbaek-Nielsen, and E. Blanc, 2001: Sprites over Europe. Geophys. Res. Lett., 28 , 35853588.

  • Orville, R. E., and G. R. Huffines, 2001: Cloud-to-ground lightning in the United States: NLDN results in the first decade, 1989–1998. Mon. Wea. Rev., 129 , 11791193.

    • Search Google Scholar
    • Export Citation
  • Pasko, V. P., U. S. Inan, and T. F. Bell, 2001: Mesosphere–troposphere coupling due to sprites. Geophys. Res. Lett., 28 , 38213824.

  • Price, C. P., M. Asfur, W. Lyons, and T. Nelson, 2002: An improved ELF/VLF method for globally geolocating sprite-producing lightning. Geophys. Res. Lett., 29 .1031, doi:10.1029/2001GL013519.

    • Search Google Scholar
    • Export Citation
  • Roussel-Dupre, R., and A. V. Gurevich, 1996: On runaway breakdown and upward propagating discharges. J. Geophys. Res., 101 , 22972310.

    • Search Google Scholar
    • Export Citation
  • Rowland, H. L., 1998: Theories and simulations of elves, sprites and blue jets. J. Atmos. Sol. Terr. Phys., 60 , 831844.

  • Sato, M., H. Fukunishi, M. Kikuchi, H. Yamagishi, and W. A. Lyons, 2003: Validation of sprite location based on ELF observations at Syowa station in Antarctica. J. Atmos. Sol. Terr. Phys., 65 , 609616.

    • Search Google Scholar
    • Export Citation
  • Schuur, T. J., and S. A. Rutledge, 2000a: Electrification of stratiform regions in mesoscale convective systems. Part I: An observational comparisons of symmetric and asymmetric MCSs. J. Atmos. Sci., 57 , 19611982.

    • Search Google Scholar
    • Export Citation
  • Schuur, T. J., and S. A. Rutledge, 2000b: Electrification of stratiform regions in mesoscale convective systems. Part II: Two-dimensional numerical simulations of a symmetric MCS. J. Atmos. Sci., 57 , 19832006.

    • Search Google Scholar
    • Export Citation
  • Sentman, D. D., E. M. Wescott, D. L. Osborne, D. L. Hampton, and M. J. Heavner, 1995: Preliminary results from the Sprites94 aircraft campaign. 1: Red sprites. Geophys. Res. Lett., 22 , 12051208.

    • Search Google Scholar
    • Export Citation
  • Shepherd, T. R., W. D. Rust, and T. C. Marshall, 1996: Electric fields and charges near 0°C in stratiform clouds. Mon. Wea. Rev., 124 , 920938.

    • Search Google Scholar
    • Export Citation
  • Stanley, M. A., 2000: Sprites and their parent discharges. Ph.D. dissertation, New Mexico Institute of Mining and Technology, 164 pp. [Available from University Microfilms, 305 N. Zeeb Road, Ann Arbor, MI 48106.].

    • Search Google Scholar
    • Export Citation
  • Stanley, M. A., P. Krehbiel, M. Brook, C. Moore, and W. Rison, 1999: High speed video of initial sprite development. Geophys. Res. Lett., 26 , 32013204.

    • Search Google Scholar
    • Export Citation
  • Stenbaek-Nielsen, H. C., D. R. Moudry, E. M. Wescott, D. D. Sentman, and F. T. Sao Sabbas, 2000: Sprites and possible mesospheric effects. Geophys. Res. Lett., 27 , 38293832.

    • Search Google Scholar
    • Export Citation
  • Stolzenburg, M., T. C. Marshall, and W. D. Rust, 2001: Serial soundings of electric field through a mesoscale convective system. J. Geophys. Res., 106 , 1237112380.

    • Search Google Scholar
    • Export Citation
  • Su, H-T., R-R. Hsu, A. B-C. Chen, Y-J. Lee, and L-C. Lee, 2002: Observation of sprites over the Asian continent and over oceans around Taiwan. Geophys. Res. Lett., 29 .1044, doi:10.1029/2001GL013737.

    • Search Google Scholar
    • Export Citation
  • Uman, M. A., 1987: The Lightning Discharge. Academic Press, 375 pp.

  • Williams, E. R., 1998: The positive charge reservoir for sprite-producing lightning. J. Atmos. Sol. Terr. Phys., 60 , 689692.

  • Williams, E. R., 2001: Sprites, elves, and glow discharge tubes. Phys. Today, 54 , 4147.

  • Wilson, C. T. R., 1925: The electric field of a thunderstorm and some of its effects. Proc. Phys. Soc. London, 37 , 32D37D.

  • Zabotin, N. A., and J. W. Wright, 2001: Role of meteoric dust in sprite formation. Geophys. Res. Lett., 28 , 25932596.

  • Zajac, B. A., and S. A. Rutledge, 2001: Cloud-to-ground lightning activity in the contiguous United States from 1995 to 1999. Mon. Wea. Rev., 129 , 9991019.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 732 175 6
PDF Downloads 361 111 3