Satellite and Radar Survey of Mesoscale Convective System Development

Israel L. Jirak Colorado State University, Fort Collins, Colorado

Search for other papers by Israel L. Jirak in
Current site
Google Scholar
PubMed
Close
,
William R. Cotton Colorado State University, Fort Collins, Colorado

Search for other papers by William R. Cotton in
Current site
Google Scholar
PubMed
Close
, and
Ray L. McAnelly Colorado State University, Fort Collins, Colorado

Search for other papers by Ray L. McAnelly in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An investigation of several hundred mesoscale convective systems (MCSs) during the warm seasons (April–August) of 1996–98 is presented. Circular and elongated MCSs on both the large and small scales were classified and analyzed in this study using satellite and radar data. The satellite classification scheme used for this study includes two previously defined categories and two new categories: mesoscale convective complexes (MCCs), persistent elongated convective systems (PECSs), meso-β circular convective systems (MβCCSs), and meso-β elongated convective systems (MβECSs). Around two-thirds of the MCSs in the study fell into the larger satellite-defined categories (MCCs and PECSs). These larger systems produced more severe weather, generated much more precipitation, and reached a peak frequency earlier in the convective season than the smaller, meso-β systems. Overall, PECSs were found to be the dominant satellite-defined MCS, as they were the largest, most common, most severe, and most prolific precipitation-producing systems.

In addition, 2-km national composite radar reflectivity data were used to analyze the development of each of the systems. A three-level radar classification scheme describing MCS development is introduced. The classification scheme is based on the following elements: presence of stratiform precipitation, arrangement of convective cells, and interaction of convective clusters. Considerable differences were found among the systems when categorized by these features. Grouping systems by the interaction of their convective clusters revealed that more than 70% of the MCSs evolved from the merger of multiple convective clusters, which resulted in larger systems than those that developed from a single cluster. The most significant difference occurred when classifying systems by their arrangement of convective cells. In particular, if the initial convection were linearly arranged, the mature MCSs were larger, longer-lived, more severe, and more effective at producing precipitation than MCSs that developed from areally arranged convection.

Corresponding author address: Israel L. Jirak, Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523. Email: ijirak@atmos.colostate.edu

Abstract

An investigation of several hundred mesoscale convective systems (MCSs) during the warm seasons (April–August) of 1996–98 is presented. Circular and elongated MCSs on both the large and small scales were classified and analyzed in this study using satellite and radar data. The satellite classification scheme used for this study includes two previously defined categories and two new categories: mesoscale convective complexes (MCCs), persistent elongated convective systems (PECSs), meso-β circular convective systems (MβCCSs), and meso-β elongated convective systems (MβECSs). Around two-thirds of the MCSs in the study fell into the larger satellite-defined categories (MCCs and PECSs). These larger systems produced more severe weather, generated much more precipitation, and reached a peak frequency earlier in the convective season than the smaller, meso-β systems. Overall, PECSs were found to be the dominant satellite-defined MCS, as they were the largest, most common, most severe, and most prolific precipitation-producing systems.

In addition, 2-km national composite radar reflectivity data were used to analyze the development of each of the systems. A three-level radar classification scheme describing MCS development is introduced. The classification scheme is based on the following elements: presence of stratiform precipitation, arrangement of convective cells, and interaction of convective clusters. Considerable differences were found among the systems when categorized by these features. Grouping systems by the interaction of their convective clusters revealed that more than 70% of the MCSs evolved from the merger of multiple convective clusters, which resulted in larger systems than those that developed from a single cluster. The most significant difference occurred when classifying systems by their arrangement of convective cells. In particular, if the initial convection were linearly arranged, the mature MCSs were larger, longer-lived, more severe, and more effective at producing precipitation than MCSs that developed from areally arranged convection.

Corresponding author address: Israel L. Jirak, Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523. Email: ijirak@atmos.colostate.edu

Save
  • Air Weather Service, 1979: The use of the skew T, log p diagram in analysis and forecasting. Tech. Rep. AWS/TR-79/006, revised, 157 pp. [Available from U.S. Air Force Air Weather Service, Scott Air Force Base, IL 62225-5008.].

    • Search Google Scholar
    • Export Citation
  • Anderson, C. J., and R. W. Arritt, 1998: Mesoscale convective complexes and persistent elongated convective systems over the United States during 1992 and 1993. Mon. Wea. Rev., 126 , 578599.

    • Search Google Scholar
    • Export Citation
  • Augustine, J. A., 1985: An automated method for the documentation of cloud-top characteristics of mesoscale convective systems. NOAA Tech. Memo. ERL ESG-10, Dept. of Commerce, Boulder, CO, 121 pp.

    • Search Google Scholar
    • Export Citation
  • Augustine, J. A., and K. W. Howard, 1988: Mesoscale convective complexes over the United States during 1985. Mon. Wea. Rev., 116 , 685701.

    • Search Google Scholar
    • Export Citation
  • Blanchard, D. O., 1990: Mesoscale convective patterns of the southern High Plains. Bull. Amer. Meteor. Soc., 71 , 9941005.

  • Bluestein, H. B., and C. R. Parks, 1983: A synoptic and photographic climatology of low-precipitation severe thunderstorms in the southern Plains. Mon. Wea. Rev., 111 , 20342046.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., and M. H. Jain, 1985: Formation of mesoscale lines of precipitation: Severe squall lines in Oklahoma during the spring. J. Atmos. Sci., 42 , 17111732.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., G. T. Marx, and M. H. Jain, 1987: Formation of mesoscale lines of precipitation: Nonsevere squall lines in Oklahoma during the spring. Mon. Wea. Rev., 115 , 27192727.

    • Search Google Scholar
    • Export Citation
  • Brooks, R. H., C. A. Doswell, and J. Cooper, 1994: On the environments of tornadic and nontornadic mesocyclones. Wea. Forecasting, 9 , 606618.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., M. S. Lin, R. L. McAnelly, and C. J. Tremback, 1989: A composite model of mesoscale convective complexes. Mon. Wea. Rev., 117 , 765783.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., G. D. Alexander, R. Hertenstein, R. L. Walko, R. L. McAnelly, and M. Nicholls, 1995: Cloud venting—A review and some new global annual estimates. Earth-Sci. Rev., 39 , 169206.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., R. J. Kane, and C. R. Chelius, 1986: The contribution of mesoscale convective weather systems to the warm-season precipitation in the United States. J. Climate Appl. Meteor., 25 , 13331345.

    • Search Google Scholar
    • Export Citation
  • Fulton, R. A., J. P. Breidenbach, D-J. Seo, D. A. Miller, and T. O'Bannon, 1998: The WSR-88D rainfall algorithm. Wea. Forecasting, 13 , 377395.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., 1998: Mesoscale convective systems in the southeast United States during 1994–95: A survey. Wea. Forecasting, 13 , 860869.

    • Search Google Scholar
    • Export Citation
  • Hilgendorf, E. R., and R. H. Johnson, 1998: A study of the evolution of mesoscale convective systems using WSR-88D data. Wea. Forecasting, 13 , 437452.

    • Search Google Scholar
    • Export Citation
  • Houze Jr., R. A., 1993: Cloud Dynamics. Academic Press, 573 pp.

  • Houze Jr., R. A., B. F. Smull, and P. Dodge, 1990: Mesoscale organization of springtime rainstorms in Oklahoma. Mon. Wea. Rev., 118 , 613654.

    • Search Google Scholar
    • Export Citation
  • Johns, R. H., and W. D. Hirt, 1987: Derechos: Widespread convectively induced windstorms. Wea. Forecasting, 2 , 3249.

  • Loehrer, S. M., and R. H. Johnson, 1995: Surface pressure and precipitation life cycle characteristics of PRE-STORM mesoscale convective complexes. Mon. Wea. Rev., 123 , 600621.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1980: Mesoscale convective complexes. Bull. Amer. Meteor. Soc., 61 , 13741387.

  • Maddox, R. A., 1983: Large-scale meteorological conditions associated with midlatitude, mesoscale convective complexes. Mon. Wea. Rev., 111 , 126140.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., D. M. Rogers, and K. W. Howard, 1982: Mesoscale convective complexes over the United States during 1981—An annual summary. Mon. Wea. Rev., 110 , 15011514.

    • Search Google Scholar
    • Export Citation
  • McAnelly, R. L., and W. R. Cotton, 1986: Meso-β scale characteristics of an episode of meso-α scale convective complexes. Mon. Wea. Rev., 114 , 17401770.

    • Search Google Scholar
    • Export Citation
  • McAnelly, R. L., and W. R. Cotton, 1989: The precipitation life cycle of mesoscale convective complexes over the central United States. Mon. Wea. Rev., 117 , 784808.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., 1975: A rational subdivision of scales for atmospheric processes. Bull. Amer. Meteor. Soc., 56 , 527530.

  • Parker, M. D., and R. H. Johnson, 2000: Organizational modes of midlatitude mesoscale convective systems. Mon. Wea. Rev., 128 , 34133436.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., R. A. Houze Jr., and S. E. Yuter, 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor., 34 , 19782007.

    • Search Google Scholar
    • Export Citation
  • Woodley, W. L., A. R. Olsen, A. Herndon, and V. Wiggert, 1975: Comparison of gage and radar methods of convective rain measurement. J. Appl. Meteor., 14 , 909928.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1617 464 38
PDF Downloads 1324 318 26