Short-Range Ensemble Predictions of 2-m Temperature and Dewpoint Temperature over New England

David J. Stensrud NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by David J. Stensrud in
Current site
Google Scholar
PubMed
Close
and
Nusrat Yussouf Cooperative Institute for Mesoscale Meteorological Studies, Norman, Oklahoma

Search for other papers by Nusrat Yussouf in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A multimodel short-range ensemble forecasting system created as part of a National Oceanic and Atmospheric Administration pilot program on temperature and air quality forecasting over New England during the summer of 2002 is evaluated. A simple 7-day running mean bias correction is applied individually to each of the 23 ensemble members. Various measures of accuracy are used to compare these bias-corrected ensemble predictions of 2-m temperature and dewpoint temperature with those available from the nested grid model (NGM) model output statistics (MOS). Results indicate that the bias-corrected ensemble mean prediction is as accurate as the NGM MOS for temperature predictions, and is more accurate than the NGM MOS for dewpoint temperature predictions, for the 48 days studied during the warm season. When the additional probabilistic information from the ensemble is examined, results indicate that the ensemble clearly provides value above that of NGM MOS for both variables, especially as the events become more unlikely. Results also indicate that the ensemble has some ability to predict forecast skill for temperature with a correlation between ensemble spread and the error of the ensemble mean of greater than 0.7 for some forecast periods. The use of a multimodel ensemble clearly helps to improve the spread–skill relationship.

Additional affiliation: NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Corresponding author address: Dr. David J. Stensrud, National Severe Storms Laboratory, 1313 Halley Circle, Norman, OK 73069. Email: David.Stensrud@noaa.gov

Abstract

A multimodel short-range ensemble forecasting system created as part of a National Oceanic and Atmospheric Administration pilot program on temperature and air quality forecasting over New England during the summer of 2002 is evaluated. A simple 7-day running mean bias correction is applied individually to each of the 23 ensemble members. Various measures of accuracy are used to compare these bias-corrected ensemble predictions of 2-m temperature and dewpoint temperature with those available from the nested grid model (NGM) model output statistics (MOS). Results indicate that the bias-corrected ensemble mean prediction is as accurate as the NGM MOS for temperature predictions, and is more accurate than the NGM MOS for dewpoint temperature predictions, for the 48 days studied during the warm season. When the additional probabilistic information from the ensemble is examined, results indicate that the ensemble clearly provides value above that of NGM MOS for both variables, especially as the events become more unlikely. Results also indicate that the ensemble has some ability to predict forecast skill for temperature with a correlation between ensemble spread and the error of the ensemble mean of greater than 0.7 for some forecast periods. The use of a multimodel ensemble clearly helps to improve the spread–skill relationship.

Additional affiliation: NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Corresponding author address: Dr. David J. Stensrud, National Severe Storms Laboratory, 1313 Halley Circle, Norman, OK 73069. Email: David.Stensrud@noaa.gov

Save
  • Benjamin, S. G., 1989: An isentropic meso-α scale analysis system and its sensitivity to aircraft and surface observations. Mon. Wea. Rev., 117 , 15861605.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., K. J. Brundage, P. A. Miller, T. L. Smith, G. A. Grell, D. Kim, J. M. Brown, and T. W. Schlatter, 1994: The Rapid Update Cycle at NMC. Preprints, 10th Conf. on Numerical Weather Prediction, Portland, OR, Amer. Meteor. Soc., 566–568.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors. 2001: The 20-km version of the RUC. Preprints, 14th Conf. on Numerical Weather Prediction, Fort Lauderdale, FL, Amer. Meteor. Soc., J75–J79.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and M. J. Miller, 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets. Quart. J. Roy. Meteor. Soc., 112 , 693709.

    • Search Google Scholar
    • Export Citation
  • Black, T. L., 1994: The new NMC mesoscale eta model: Description and forecast examples. Wea. Forecasting, 9 , 265278.

  • Brier, G. W., 1950: Verification of forecasts expressed in terms of probability. Mon. Wea. Rev., 78 , 13.

  • Brooks, H. E., C. A. Doswell III, and R. A. Maddox, 1992: On the use of mesoscale and cloud-scale models in operational forecasting. Wea. Forecasting, 7 , 120132.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., M. Miller, and T. N. Palmer, 1999: Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Quart. J. Roy. Meteor. Soc., 125 , 28872908.

    • Search Google Scholar
    • Export Citation
  • Dallavalle, J. P., 1996: A perspective on the use of model output statistics in objective weather forecasting. Preprints, 15th Conf. on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., 479–482.

    • Search Google Scholar
    • Export Citation
  • Dempsey, C. L., K. W. Howard, R. A. Maddox, and D. H. Phillips, 1998: Developing advanced weather technologies for the power industry. Bull. Amer. Meteor. Soc., 79 , 10191035.

    • Search Google Scholar
    • Export Citation
  • Du, J., S. L. Mullen, and F. Sanders, 1997: Short-range ensemble forecasting of quantitative precipitation. Mon. Wea. Rev., 125 , 24272459.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1993: A nonhydrostatic version of the Penn State–NCAR mesoscale model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev., 121 , 14931513.

    • Search Google Scholar
    • Export Citation
  • Evans, R. E., M. S. J. Harrison, R. J. Graham, and K. R. Mylne, 2000: Joint medium-range ensembles from the Met. Office and ECMWF systems. Mon. Wea. Rev., 128 , 31043127.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., J. Hilliker, J. Ross, and R. L. Vislocky, 2000: Model consensus. Wea. Forecasting, 15 , 571582.

  • Glahn, H. R., and D. A. Lowry, 1972: The use of model output statistics (MOS) in objective weather forecasting. J. Appl. Meteor., 11 , 12031211.

    • Search Google Scholar
    • Export Citation
  • Grimit, E. P., and C. F. Mass, 2002: Initial results of a mesoscale short-range ensemble forecasting system over the Pacific Northwest. Wea. Forecasting, 17 , 192205.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 2001: Interpretation of rank histograms for verifying ensemble forecasts. Mon. Wea. Rev., 129 , 550560.

  • Hamill, T. M., and S. J. Colucci, 1997: Verification of Eta–RSM short-range ensemble forecasts. Mon. Wea. Rev., 125 , 13121327.

  • Hamill, T. M., and S. J. Colucci, 1998: Evaluation of Eta–RSM ensemble probabilistic precipitation forecasts. Mon. Wea. Rev., 126 , 711724.

    • Search Google Scholar
    • Export Citation
  • Harrison, M. S. J., T. N. Palmer, D. S. Richardson, and R. Buizza, 1999: Analysis and model dependencies in medium-range ensembles: Two transplant case studies. Quart. J. Roy. Meteor. Soc., 125 , 24872515.

    • Search Google Scholar
    • Export Citation
  • Homleid, M., 1995: Diurnal corrections of short-term temperature forecasts using the Kalman filter. Wea. Forecasting, 10 , 689707.

  • Hong, S-Y., and H-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124 , 23222339.

    • Search Google Scholar
    • Export Citation
  • Hou, D., E. Kalnay, and K. K. Droegemeier, 2001: Objective verification of the SAMEX'98 ensemble forecasts. Mon. Wea. Rev., 129 , 7391.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., 1993: Global and local skill forecasts. Mon. Wea. Rev., 121 , 18341846.

  • Jacks, E., J. B. Bower, V. J. Dagostaro, J. P. Dallavalle, M. C. Erickson, and J. C. Su, 1990: New NGM-based MOS guidance for maximum/minimum temperature, probability of precipitation, cloud amount, and surface wind. Wea. Forecasting, 5 , 128138.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain Eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122 , 927945.

    • Search Google Scholar
    • Export Citation
  • Juang, H-M. H., and M. Kanamitsu, 1994: The NMC nested regional spectral model. Mon. Wea. Rev., 122 , 326.

  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47 , 27842802.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., M. E. Baldwin, P. Janish, and S. J. Weiss, 2001: Utilizing the Eta Model with two different convective parameterizations to predict convective initiation and evolution at the SPC. Preprints, Ninth Conf. on Mesoscale Processes, Ft. Lauderdale, FL, Amer. Meteor. Soc., 91–95.

    • Search Google Scholar
    • Export Citation
  • Katz, R. W., and A. H. Murphy, 1997: Forecast value: Prototype decision-making models. Economic Value of Weather and Climate Forecasts, R. W. Katz and A. H. Murphy, Eds., Cambridge University Press, 183–217.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., C. M. Kishtawal, T. E. LaRow, D. R. Bachiochi, Z. Zhang, C. E. Williford, S. Gadgil, and S. Surendran, 1999: Improved weather and seasonal climate forecasts from multi-model superensemble. Science, 285 , 15481550.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., and Coauthors. 2001: Real-time multianalysis–multimodel superensemble forecasts of precipitation using TRMM and SSM/I products. Mon. Wea. Rev., 129 , 28612883.

    • Search Google Scholar
    • Export Citation
  • Mao, Q., R. T. McNider, S. F. Mueller, and H-M. H. Juang, 1999: An optimal model output calibration algorithm suitable for objective temperature forecasting. Wea. Forecasting, 14 , 190202.

    • Search Google Scholar
    • Export Citation
  • Mason, I., 1982: A model for assessment of weather forecasts. Aust. Meteor. Mag., 30 , 291303.

  • Mass, C. F., D. Ovens, K. Westrick, and B. A. Colle, 2002: Does increasing horizontal resolution produce beter forecasts? Bull. Amer. Meteor. Soc., 83 , 407430.

    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., 1977: The value of climatological, categorical, and probabilistic forecasts in the cost-loss ratio situation. Mon. Wea. Rev., 105 , 803816.

    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., 1994: Assessing the economic value of weather forecasts: An overview of method, results and issues. Meteor. Appl., 1 , 6973.

    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., and R. L. Winkler, 1979: Probabilistic temperature forecasts: The case for an operational program. Bull. Amer. Meteor. Soc., 60 , 1219.

    • Search Google Scholar
    • Export Citation
  • Richardson, D. S., 2000: Skill and relative economic value of the ECMWF ensemble prediction system. Quart. J. Roy. Meteor. Soc., 126 , 649667.

    • Search Google Scholar
    • Export Citation
  • Richardson, D. S., M. S. J. Harrison, K. B. Robertson, and A. P. Woodcock, 1996: Joint medium-range ensembles using UKMO, ECMWF, and NCEP ensemble systems. Preprints, 11th Conf. on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., J26–J28.

    • Search Google Scholar
    • Export Citation
  • Ross, G. H., 1989: Model output statistics—An updateable scheme. Preprints, 11th Conf. on Probability and Statistics in Atmospheric Sciences, Monterey, CA, Amer. Meteor. Soc., 93–97.

    • Search Google Scholar
    • Export Citation
  • Sanders, F., 1963: On subjective probability forecasting. J. Appl. Meteor., 2 , 191201.

  • Stensrud, D. J., and J. A. Skindlov, 1996: Gridpoint predictions of high temperature from a mesoscale model. Wea. Forecasting, 11 , 103110.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., H. E. Brooks, J. Du, M. S. Tracton, and E. Rogers, 1999: Using ensembles for short-range forecasting. Mon. Wea. Rev., 127 , 433446.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., J-W. Bao, and T. T. Warner, 2000: Using initial condition and model physics perturbations in short-range ensembles of mesoscale convective systems. Mon. Wea. Rev., 128 , 20772107.

    • Search Google Scholar
    • Export Citation
  • Stull, R. L., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Swets, J. A., 1973: The relative operating characteristic in psychology. Science, 182 , 9901000.

  • Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 74 , 23172330.

  • Toth, Z., and E. Kalnay, 1997: Ensemble forecasting at NCEP and the breeding method. Mon. Wea. Rev., 125 , 32973319.

  • Wandishin, M. S., S. L. Mullen, D. J. Stensrud, and H. E. Brooks, 2001: Evaluation of a short-range multimodel ensemble system. Mon. Wea. Rev., 129 , 729747.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and A. F. Loughe, 1998: The relationship between ensemble spread and ensemble mean skill. Mon. Wea. Rev., 126 , 32923302.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences: An Introduction. Academic Press, 467 pp.

  • Wilson, L. J., and M. Vallée, 2002: The Canadian updateable model output statistics (UMOS) system: Design and development tests. Wea. Forecasting, 17 , 206222.

    • Search Google Scholar
    • Export Citation
  • Zhang, D-L., and R. A. Anthes, 1982: A high-resolution model of the planetary boundary layer—Sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteor., 21 , 15941609.

    • Search Google Scholar
    • Export Citation
  • Ziehmann, C., 2000: Comparison of a single-model EPS with a multi-model ensemble consisting of a few operational models. Tellus, 52A , 280299.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 339 86 15
PDF Downloads 239 68 11