Propagation and the Vertical Structure of the Madden–Julian Oscillation

Kenneth R. Sperber Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, Livermore, California

Search for other papers by Kenneth R. Sperber in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Madden–Julian oscillation (MJO) dominates tropical variability on time scales of 30–70 days. During the boreal winter–spring it is manifested as an eastward propagating disturbance, with a strong convective signature over the Eastern Hemisphere. The space–time structure of the MJO is described using the National Centers for Environmental Prediction–National Center for Atmospheric Research reanalysis, Advanced Very High Resolution Radiometer outgoing longwave radiation, observed sea surface temperature, and the Climate Prediction Center Merged Analysis of Precipitation. Empirical orthogonal function analysis is used to identify the convective signature of the MJO, and regression is used to identify key relationships with the convection. Compared to analyzing successive years of data, the selection of years of strong MJO activity results in a more robust lead–lag structure and an increase in explained variance. The MJO exhibits a rich vertical structure, with low-level moisture convergence being well defined when the convective anomalies are strong, and there is evidence that free-tropospheric processes also play a role in the MJO life cycle. The westward vertical tilt is most apparent over the western Pacific. Over the Indian Ocean the system is more vertically stacked, principally because of the strong subsidence of the inactive phase of the MJO, which lies to the east of the convection. As the Kelvin wave decouples from the convection near the date line, a sea level low pressure surge, previously discussed by A. J. Matthews, transits the eastern Pacific and Atlantic Oceans. Here the link of the zonal wind stress and low-level divergence to the pressure surge is explored. The pressure gradient gives rise to westerlies that propagate rapidly to the east, and it may play role in the development of the MJO convection in the western Indian Ocean, which occurs in an easterly basic state, and conditions not consistent with the low-level moisture convergence paradigm.

Corresponding author address: Dr. Kenneth R. Sperber, Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, P.O. Box 808, L-103, Livermore, CA 94550. Email: sperber1@llnl.gov

Abstract

The Madden–Julian oscillation (MJO) dominates tropical variability on time scales of 30–70 days. During the boreal winter–spring it is manifested as an eastward propagating disturbance, with a strong convective signature over the Eastern Hemisphere. The space–time structure of the MJO is described using the National Centers for Environmental Prediction–National Center for Atmospheric Research reanalysis, Advanced Very High Resolution Radiometer outgoing longwave radiation, observed sea surface temperature, and the Climate Prediction Center Merged Analysis of Precipitation. Empirical orthogonal function analysis is used to identify the convective signature of the MJO, and regression is used to identify key relationships with the convection. Compared to analyzing successive years of data, the selection of years of strong MJO activity results in a more robust lead–lag structure and an increase in explained variance. The MJO exhibits a rich vertical structure, with low-level moisture convergence being well defined when the convective anomalies are strong, and there is evidence that free-tropospheric processes also play a role in the MJO life cycle. The westward vertical tilt is most apparent over the western Pacific. Over the Indian Ocean the system is more vertically stacked, principally because of the strong subsidence of the inactive phase of the MJO, which lies to the east of the convection. As the Kelvin wave decouples from the convection near the date line, a sea level low pressure surge, previously discussed by A. J. Matthews, transits the eastern Pacific and Atlantic Oceans. Here the link of the zonal wind stress and low-level divergence to the pressure surge is explored. The pressure gradient gives rise to westerlies that propagate rapidly to the east, and it may play role in the development of the MJO convection in the western Indian Ocean, which occurs in an easterly basic state, and conditions not consistent with the low-level moisture convergence paradigm.

Corresponding author address: Dr. Kenneth R. Sperber, Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, P.O. Box 808, L-103, Livermore, CA 94550. Email: sperber1@llnl.gov

Save
  • Annamalai, H., and J. M. Slingo, 2001: Active/break cycles: Diagnosis of the intraseasonal variability of the Asian summer monsoon. Climate Dyn., 18 , 85102.

    • Search Google Scholar
    • Export Citation
  • Arkin, P. A., and P. E. Ardanuy, 1989: Estimating climatic-scale precipitation from space: A review. J. Climate, 2 , 12291238.

  • Bladé, I., and D. L. Hartmann, 1993: Tropical intraseasonal oscillations in a simple nonlinear model. J. Atmos. Sci., 50 , 29222939.

  • Emanuel, K. A., 1987: An air–sea interaction model of intraseasonal oscillations in the Tropics. J. Atmos. Sci., 44 , 23242340.

  • Ferranti, L., T. N. Palmer, F. Molteni, and E. Klinker, 1990: Tropical–extratropical interaction associated with the 30–60 day oscillation and its impact on medium and extended range prediction. J. Atmos. Sci., 47 , 21772199.

    • Search Google Scholar
    • Export Citation
  • Flatau, M., P. J. Flatau, P. Phoebus, and P. P. Niiler, 1997: The feedback between equatorial convection and local radiative and evaporative processes: The implication for intraseasonal oscillations. J. Atmos. Sci., 54 , 23732386.

    • Search Google Scholar
    • Export Citation
  • Gautier, C., G. Diak, and S. Masse, 1980: A simple physical model to estimate incident solar radiation at the surface from GOES satellite data. J. Appl. Meteor., 19 , 10051012.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and M. L. Salby, 1994: The life cycle of the Madden–Julian oscillation. J. Atmos. Sci., 51 , 22252237.

  • Hendon, H. H., C. Zhang, and J. D. Glick, 1999: Interannual variation of the Madden–Julian oscillation during austral summer. J. Climate, 12 , 25382550.

    • Search Google Scholar
    • Export Citation
  • Hosom, D. S., R. A. Weller, R. E. Payne, and K. E. Prada, 1995: The IMET (improved meteorology) ship and buoy systems. J. Atmos. Oceanic Technol., 12 , 527540.

    • Search Google Scholar
    • Export Citation
  • Jones, C., and B. C. Weare, 1996: The role of low-level moisture convergence and ocean latent heat fluxes in the Madden and Julian oscillation: An observational analysis using ISCCP data and ECMWF analyses. J. Climate, 9 , 30863140.

    • Search Google Scholar
    • Export Citation
  • Jones, C., D. E. Waliser, and C. Gautier, 1998: The influence of the Madden–Julian oscillation on ocean surface heat fluxes and sea surface temperature. J. Climate, 11 , 10571072.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors. 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kemball-Cook, S. R., and B. C. Weare, 2001: The onset of convection in the Madden–Julian oscillation. J. Climate, 14 , 780793.

  • Knutson, T. R., and K. M. Weickmann, 1987: 30–60 day atmospheric oscillations: Composite life cycles of convection and circulation anomalies. Mon. Wea. Rev., 115 , 14071436.

    • Search Google Scholar
    • Export Citation
  • Lau, K-M., and L. Peng, 1987: Origin of low-frequency (intraseasonal) oscillations in the tropical atmosphere. Part I: Basic theory. J. Atmos. Sci., 44 , 950972.

    • Search Google Scholar
    • Export Citation
  • Lau, K-M., and C. H. Sui, 1997: Mechanisms of short-term sea surface temperature regulation: Observations during TOGA-COARE. J. Climate, 10 , 465472.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) OLR dataset. Bull. Amer. Meteor. Soc., 77 , 12751277.

  • Lin, X., and R. H. Johnson, 1996: Heating, moistening, and rainfall over the western Pacific warm pool during TOGA COARE. J. Atmos. Sci., 53 , 33673383.

    • Search Google Scholar
    • Export Citation
  • Livezey, R. E., and W. Y. Chen, 1983: Statistical field significance and its determination by Monte Carlo techniques. Mon. Wea. Rev., 111 , 4659.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., 1988: Large intraseasonal variations in wind stress over the tropical Pacific. J. Geophys. Res., 93 , 53335340.

  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28 , 702708.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the Tropics with a 40–50 day period. J. Atmos. Sci., 29 , 11091123.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122 , 814837.

  • Maloney, E. D., and D. L. Hartmann, 1998: Frictional moisture convergence in a composite life cycle of the Madden–Julian oscillation. J. Climate, 11 , 23872403.

    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., 2000: Propagation mechanisms for the Madden–Julian oscillation. Quart. J. Roy. Meteor. Soc., 126 , 26372651.

  • Mo, K. C., and R. W. Higgins, 1996: Large-scale atmospheric moisture transport as evaluated in the NCEP/NCAR and the NASA/DAO reanalyses. J. Climate, 9 , 15311545.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and R. W. Higgins, 1998: Tropical influences on California precipitation. J. Climate, 11 , 412430.

  • Murakami, T., 1988: Intraseasonal atmospheric teleconnection patterns during Northern Hemisphere winter. J. Climate, 1 , 117131.

  • Myers, D. S., and D. E. Waliser, 2003: Three-dimensional water vapor and cloud variations associated with the Madden–Julian oscillation during Northern Hemisphere winter. J. Climate, 16 , 929950.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., I. M. Held, and K. H. Cook, 1987: Evaporation wind feedback and low-frequency variability in the tropical atmosphere. J. Atmos. Sci., 44 , 23412348.

    • Search Google Scholar
    • Export Citation
  • Nitta, T., T. Mizuno, and K. Takahashi, 1992: Multi-scaled convective systems and the 86/87 ENSO. J. Meteor. Soc. Japan, 70 , 447458.

  • Pan, H. L., and L. Mahrt, 1987: Interaction between soil hydrology and boundary layer developments. Bound.-Layer Meteor., 38 , 185202.

    • Search Google Scholar
    • Export Citation
  • Pan, H. L., and W. S. Wu, 1994: Implementing a mass-flux convection parameterization package for the NMC medium-range forecast model. Preprints, 10th Conf. on Numerical Weather Prediction, Portland, OR, Amer. Meteor. Soc., 96–98.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7 , 929948.

    • Search Google Scholar
    • Export Citation
  • Rosen, R. D., and D. A. Salstein, 1983: Variations in angular momentum on global and regional scales and the length of day. J. Geophys. Res., 88 , 54515470.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., L. C. Garder, P. J. Lu, and A. W. Walker, 1988: International Satellite Cloud Climatology Project (ISSCP) documentation of cloud data. WMO Tech. Doc. WMO/TD 266, World Meteorological Organization, Geneva, Switzerland, 77 pp.

    • Search Google Scholar
    • Export Citation
  • Rui, H., and B. Wang, 1990: Development characteristics and dynamic structure of tropical intraseasonal convective anomalies. J. Atmos. Sci., 47 , 357379.

    • Search Google Scholar
    • Export Citation
  • Salby, M. L., and H. H. Hendon, 1994: Intraseasonal behavior of clouds, temperature, and motion in the Tropics. J. Atmos. Sci., 51 , 22072224.

    • Search Google Scholar
    • Export Citation
  • Salby, M. L., R. Garcia, and H. H. Hendon, 1994: Planetary-scale circulations in the presence of climatological and wave-induced heating. J. Atmos. Sci., 51 , 23442367.

    • Search Google Scholar
    • Export Citation
  • Shinoda, T., H. H. Hendon, and J. Glick, 1998: Intraseasonal variability of surface fluxes and sea surface temperature in the tropical western Pacific and Indian oceans. J. Climate, 11 , 16851702.

    • Search Google Scholar
    • Export Citation
  • Shinoda, T., H. H. Hendon, and J. Glick, 1999: Intraseasonal surface fluxes in the tropical western Pacific and Indian Oceans from NCEP reanalyses. Mon. Wea. Rev., 127 , 678693.

    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., 1987: The development and verification of a cloud prediction scheme for the ECMWF model. Quart. J. Roy. Meteor. Soc., 113 , 899927.

    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., and Coauthors. 1996: Intraseasonal oscillations in 15 atmospheric general circulation models: Results from an AMIP diagnostic subproject. Climate Dyn., 12 , 325357.

    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., D. P. Rowell, K. R. Sperber, and F. Nortley, 1999: On the predictability of the interannual behaviour of the Madden–Julian oscillation and its relationship with El Niño. Quart. J. Roy. Meteor. Soc., 125 , 583609.

    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., J. M. Slingo, P. M. Inness, and W. K-M. Lau, 1997: On the maintenance and initiation of the intraseasonal oscillation in the NCEP/NCAR reanalysis and in the GLA and UKMO AMIP simulations. Climate Dyn., 13 , 769795.

    • Search Google Scholar
    • Export Citation
  • Stendel, M., and K. Arpe, 1997: Evaluation of the hydrological cycle in reanalyses and observations. Rep. 228, Max-Planck-Institut für Meteorologie, Hamburg, Germany, 52 pp.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and T. Li, 1994: Convective interaction with boundary-layer dynamics in the development of a tropical intraseasonal system. J. Atmos. Sci., 51 , 13861400.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and X. Xie, 1998: Coupled modes of the warm pool climate system. Part I: The role of air–sea interaction in maintaining the Madden–Julian oscillation. J. Climate, 11 , 21162135.

    • Search Google Scholar
    • Export Citation
  • Weickmann, K. M., G. R. Lussky, and J. E. Kutzbach, 1985: Intraseasonal (30–60 day) fluctuations of outgoing longwave radiation and 250 mb streamfunction during northern winter. Mon. Wea. Rev., 113 , 941961.

    • Search Google Scholar
    • Export Citation
  • Woolnough, S. J., J. M. Slingo, and B. J. Hoskins, 2000: The relationship between convection and sea surface temperature on intraseasonal timescales. J. Climate, 13 , 20862104.

    • Search Google Scholar
    • Export Citation
  • Woolnough, S. J., J. M. Slingo, and B. J. Hoskins, 2001: The organization of tropical convection by intraseasonal sea surface temperature anomalies. Quart. J. Roy. Meteor. Soc., 127 , 887907.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78 , 25392558.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 1996: Atmospheric intraseasonal variability at the surface in the tropical western Pacific Ocean. J. Atmos. Sci., 53 , 739758.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., and M. J. McPhaden, 1995: The relationship between sea surface temperature and latent heat flux in the equatorial Pacific. J. Climate, 8 , 589605.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., and M. J. McPhaden, 2000: Intraseasonal surface cooling in the equatorial western Pacific. J. Climate, 13 , 22612276.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 511 182 13
PDF Downloads 327 73 4