Seasonal Forecasts of North Atlantic 850-hPa Air Temperature Anomalies Using Singular Vectors

E. SánchezGómez Departamento de Física, Universidad de Alcalá, Madrid, Spain

Search for other papers by E. SánchezGómez in
Current site
Google Scholar
PubMed
Close
and
M. J. OrtizBeviá Departamento de Física, Universidad de Alcalá, Madrid, Spain

Search for other papers by M. J. OrtizBeviá in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The seasonal predictability of the North Atlantic basin is assessed with the help of an empirical model. The model statistics uses the singular value decomposition of the cross-covariance matrix between the predictor (sea surface temperature anomalies) and the predictand (850-hPa air temperature anomalies) at a lag equal to the forecast lead. Three decades (1970–2000) are forecast at different lead times.

Highest skill values are found in the subtropics, near Bermuda and around the Iberian Peninsula. Skill values similar to these last can be found near the U.S. coast in autumn. In one of these regions, the model forecast sucessfully more than 50% of the variance of the unfiltered predictand field. In large regions of the domain, the skill values beat those obtained by assuming persistence. Therefore, we propose to use this model, instead of persistence, to assess the performance of the seasonal forecasts of midlatitude anomalies made with atmospheric GCMs.

Corresponding author address: Dr. M. J. OrtizBeviá, Departamento de Física, Universidad de Alcalá, Cra. Barcelona, Km. 33.6, Alcalá de Henares, 28871 Madrid, Spain. Email: mjose.ortiz@uah.es

Abstract

The seasonal predictability of the North Atlantic basin is assessed with the help of an empirical model. The model statistics uses the singular value decomposition of the cross-covariance matrix between the predictor (sea surface temperature anomalies) and the predictand (850-hPa air temperature anomalies) at a lag equal to the forecast lead. Three decades (1970–2000) are forecast at different lead times.

Highest skill values are found in the subtropics, near Bermuda and around the Iberian Peninsula. Skill values similar to these last can be found near the U.S. coast in autumn. In one of these regions, the model forecast sucessfully more than 50% of the variance of the unfiltered predictand field. In large regions of the domain, the skill values beat those obtained by assuming persistence. Therefore, we propose to use this model, instead of persistence, to assess the performance of the seasonal forecasts of midlatitude anomalies made with atmospheric GCMs.

Corresponding author address: Dr. M. J. OrtizBeviá, Departamento de Física, Universidad de Alcalá, Cra. Barcelona, Km. 33.6, Alcalá de Henares, 28871 Madrid, Spain. Email: mjose.ortiz@uah.es

Save
  • Barnston, A. G., and Coauthors. 1994: Long-lead seasonal forecasts—Where do we stand? Bull. Amer. Meteor. Soc., 75 , 20972114.

  • Bjerkness, J., 1964: Atlantic air–sea interaction. Advances in Geophysics, Vol. 10, Academic Press, 1–82.

  • Brankovic, C., and T. N. Palmer, 2000: Seasonal skill and predictability of ECMWF PROVOST ensembles. Quart. J. Roy. Meteor. Soc., 126 , 20352067.

    • Search Google Scholar
    • Export Citation
  • Brankovic, C., T. N. Palmer, and L. Ferranti, 1994: Predictability of seasonal atmospheric variations. J. Climate, 7 , 217237.

  • Bretherton, C. S., C. Smith, and J. M. Wallace, 1992: An intercomparison of methods for finding coupled patterns in climate data. J. Climate, 5 , 541560.

    • Search Google Scholar
    • Export Citation
  • Czaja, A., and C. Frankignoul, 1999: Influence of North Atlantic SST on the atmospheric circulation. Geophys. Res. Lett., 26 , 29692972.

    • Search Google Scholar
    • Export Citation
  • Derome, J., and Coauthors. 2002: Seasonal predictions based on two dynamical models. Atmos.–Ocean, 39 , 485501.

  • Efron, B., and J. R. Tibshirani, 1993: An Introduction to the Bootstrap. Chapman and Hall, 436 pp.

  • Johansson, A., A. Barnston, A. Saha, and H. Van den Dool, 1998: On the level and origin of seasonal variability forecast skill in northern Europe. J. Atmos. Sci., 55 , 103127.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors. 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kanamitsu, M., and Coauthors. 2002: NCEP dynamical seasonal forecast system 2000. Bull. Amer. Meteor. Soc., 83 , 10191032.

  • Livezey, R. E., and W. Y. Chen, 1983: Statistical field significance and its determination by Monte Carlo techniques. Mon. Wea. Rev., 111 , 4658.

    • Search Google Scholar
    • Export Citation
  • Navarra, A., 1993: A new set of orthonormal modes for linearized meteorological problems. J. Atmos. Sci., 50 , 25692583.

  • Penland, C., and T. Magorian, 1993: Prediction of Niño 3 sea surface temperatures using linear inverse modeling. J. Climate, 6 , 10671076.

    • Search Google Scholar
    • Export Citation
  • Penland, C., and L. Matrosova, 1998: Prediction of tropical Atlantic sea surface temperature using linear inverse modeling. J. Climate, 11 , 483496.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, P. Frich, E. B. Horton, C. K. Folland, and L. V. Alexander, 2000: SST and sea-ice fields for ERA-40. Proc. Second World Climate Research Program Int. Conf. on Reanalysis, Reading, United Kingdom, World Meteorological Organization, WMO/TD-985, WCRP-109, 18–22.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., and T. M. Smith, 1994: Improved sea surface temperature analyses. J. Climate, 7 , 929948.

  • Ruiz de Elvira, A., and M. J. OrtizBeviá, 1995: Application of statistical techniques to the analysis and prediction of ENSO. Dyn. Atmos. Oceans, 22 , 91114.

    • Search Google Scholar
    • Export Citation
  • Ruiz de Elvira, A., M. J. OrtizBeviá, and W. CabosNarvaez, 2000: Empirical predictions of tropical Atlantic SST anomalies. Quart. J. Roy. Meteor. Soc., 126 , 21992210.

    • Search Google Scholar
    • Export Citation
  • SánchezGómez, E., F. Alvarez, and M. J. OrtizBeviá, 2001: Empirical prediction of 850 hPa North Atlantic air temperature anomalies. Quart. J. Roy. Meteor. Soc., 127 , 27612786.

    • Search Google Scholar
    • Export Citation
  • SánchezGómez, E., W. CabosNarváez, and M. J. OrtizBeviá, 2002: Sea ice anomalies as long range predictors of atmospheric conditions in the North Atlantic basin. Tellus, 54A , 245259.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., M. J. Suarez, Y. Chang, and G. Branstator, 2001: The impact of ENSO on extratropical low-frequency noise in seasonal forecasts. J. Climate, 14 , 23512365.

    • Search Google Scholar
    • Export Citation
  • Shabbar, A., and A. G. Barnston, 1996: Skill of seasonal climate forecasts in Canada using canonical correlation analysis. Mon. Wea. Rev., 124 , 859881.

    • Search Google Scholar
    • Export Citation
  • Vautard, R., G. Plaut, R. Wang, and G. Brunet, 1999: Seasonal prediction of North America surface air temperature using space–time principal components. J. Climate, 12 , 380394.

    • Search Google Scholar
    • Export Citation
  • Woodruff, S. D., E. J. Slutz, R. L. Jenne, and P. M. Steurer, 1987: A comprehensive ocean–atmosphere data set. Bull. Amer. Meteor. Soc., 68 , 12391250.

    • Search Google Scholar
    • Export Citation
  • Yuval, N., 2001: Enhancement and error estimation of neural network prediction of Niño-3.4 SST anomalies. J. Climate, 14 , 21502163.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 92 35 6
PDF Downloads 24 11 0