• Bailey, D. A., and A. H. Lynch, 2000a: Development of an Antarctic regional climate system model. Part I: Sea ice and large-scale circulation. J. Climate, 13 , 13371350.

    • Search Google Scholar
    • Export Citation
  • Bailey, D. A., and A. H. Lynch, 2000b: Development of an Antarctic regional climate system model. Part II: Station validation and surface energy balance. J. Climate, 13 , 13511361.

    • Search Google Scholar
    • Export Citation
  • Ball, F. K., 1960: Winds over the ice slopes of Antarctica. Ant. Meteor., Pergamon Press, 9–16.

  • Borisenkov, E. P., and L. V. Dolganov, 1982: Some results of climatic generalization of meteorological observations in the Antarctic. J. Geophys. Res., 87 , 96539666.

    • Search Google Scholar
    • Export Citation
  • Briegleb, B. P., and D. H. Bromwich, 1998a: Polar radiation budgets of the NCAR CCM3. J. Climate, 11 , 12461269.

  • Briegleb, B. P., and D. H. Bromwich, 1998b: Polar climate simulation of the NCAR CCM3. J. Climate, 11 , 12701286.

  • Bromwich, D. H., 1988: Snowfall in high southern latitudes. Rev. Geophys., 26 , 149168.

  • Bromwich, D. H., and T. R. Parish, 1998: Meteorology of the Antarctic. Meteorology of the Southern Hemisphere, Meteor. Monogr., No. 49, Amer. Meteor. Soc., 175–200.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., J. J. Cassano, T. Klein, G. Heinemann, K. M. Hines, K. Steffen, and J. E. Box, 2001: Mesoscale modeling of katabatic winds over Greenland with the Polar MM5. Mon. Wea. Rev., 129 , 22902309.

    • Search Google Scholar
    • Export Citation
  • Carleton, A. M., and Y. D. Song, 1997: Synoptic climatology, and intrahemispheric associations, of cold air mesocyclones in the Australasian sector. J. Geophys. Res., 102 , 1387313887.

    • Search Google Scholar
    • Export Citation
  • Carrasco, J. F., D. H. Bromwich, and Z. Liu, 1997a: Mesoscale cyclone activity over Antarctica during 1991. 1. Marie Byrd Land. J. Geophys. Res., 102 , 1392313937.

    • Search Google Scholar
    • Export Citation
  • Carrasco, J. F., D. H. Bromwich, and Z. Liu, 1997b: Mesoscale cyclone activity over Antarctica during 1991. 2. Near the Antarctic Peninsula. J. Geophys. Res., 102 , 1393913954.

    • Search Google Scholar
    • Export Citation
  • Cassano, J. J., J. E. Box, D. H. Bromwich, L. Li, and K. Steffen, 2001a: Verification of polar MM5 simulations of Greenland's atmospheric circulation. J. Geophys. Res., 106 , 3386733890.

    • Search Google Scholar
    • Export Citation
  • Cassano, J. J., T. R. Parish, and J. C. King, 2001b: Evaluation of turbulent surface flux parameterizations for the stable surface layer over Halley, Antarctica. Mon. Wea. Rev., 129 , 2646.

    • Search Google Scholar
    • Export Citation
  • Chen, B., D. H. Bromwich, K. M. Hines, and X. Pan, 1995: Simulations of the 1979–1988 polar climates by global climate models. Ann. Glaciol., 21 , 8390.

    • Search Google Scholar
    • Export Citation
  • Cullather, R. I., D. H. Bromwich, and M. L. Van Woert, 1998: Spatial and temporal variability of Antarctic precipitation from atmospheric methods. J. Climate, 11 , 334368.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1993: A nonhydrostatic version of the Penn State–NCAR Mesoscale Model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev., 121 , 14931513.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., and J. A. Curry, 1992: A parameterization of ice cloud optical properties for climate models. J. Geophys. Res., 97 , 38313836.

    • Search Google Scholar
    • Export Citation
  • Fletcher, N. H., 1962: Physics of Rain Clouds. Cambridge University Press, 386 pp.

  • Giovinetto, M. B., N. M. Waters, and C. R. Bentley, 1990: Dependence of Antarctic surface mass balance on temperature, elevation and distance to open ocean. J. Geophys. Res., 95 , 35173531.

    • Search Google Scholar
    • Export Citation
  • Grell, G. L., J. Dudhia, and D. R. Stauffer, 1994: A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398+STR, 117 pp.

    • Search Google Scholar
    • Export Citation
  • Hack, J. J., B. A. Boville, B. P. Briegleb, J. T. Kiehl, P. J. Rasch, and D. L. Williamson, 1993: Description of the NCAR Community Climate Model (CCM2). NCAR Tech. Note NCAR/TN-382+STR, 120 pp.

    • Search Google Scholar
    • Export Citation
  • Hahn, C. J., S. G. Warren, and J. London, 1995: The effect of moonlight on observation of cloud cover at night, and application to cloud climatology. J. Climate, 8 , 14291446.

    • Search Google Scholar
    • Export Citation
  • Heinemann, G., 1999: The KABEG'97 field experiment: An aircraft-based study of katabatic wind dynamics over the Greenland ice sheet. Bound.-Layer Meteor., 93 , 75116.

    • Search Google Scholar
    • Export Citation
  • Heinemann, G., and L. Rose, 1990: Surface energy balance parameterizations of boundary-layer heights and the application of resistance laws near an Antarctic ice shelf front. Bound.-Layer Meteor., 51 , 123158.

    • Search Google Scholar
    • Export Citation
  • Hines, K. M., D. H. Bromwich, and T. R. Parish, 1995: A mesoscale modeling study of the atmospheric circulation of high southern latitudes. Mon. Wea. Rev., 123 , 11461165.

    • Search Google Scholar
    • Export Citation
  • Hines, K. M., D. H. Bromwich, and R. I. Cullather, 1997a: Evaluating moist physics for Antarctic mesoscale simulations. Ann. Glaciol., 25 , 282286.

    • Search Google Scholar
    • Export Citation
  • Hines, K. M., D. H. Bromwich, and Z. Liu, 1997b: Combined global climate model and mesoscale model simulations of Antarctic climate. J. Geophys. Res., 102 , 1374713760.

    • Search Google Scholar
    • Export Citation
  • Holmes, R. E., G. A. Weidner, and C. R. Stearns, 1993: Antarctic automatic weather stations: Austral summer 1992–1993. Antarctic J. U.S., 28 (5) 296299.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122 , 927945.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, B. P. Briegleb, D. L. Williamson, and P. J. Rasch, 1996: Description of the NCAR Community Climate Model (CCM3). NCAR Tech. Note NCAR/TN-420+STR, 160 pp.

    • Search Google Scholar
    • Export Citation
  • King, J. C., 1990: Some measurements of turbulence over Antarctic ice shelf. Quart. J. Roy. Meteor. Soc., 116 , 379400.

  • King, J. C., and J. Turner, 1997: Antarctic Meteorology and Climatology,. Cambridge University Press, 256 pp.

  • Klemp, J. B., and D. R. Durran, 1983: An upper boundary condition permitting internal gravity wave radiation in numerical mesoscale models. Mon. Wea. Rev., 111 , 430444.

    • Search Google Scholar
    • Export Citation
  • Liu, H., K. C. Jezek, and B. Li, 1999: Development of an Antarctic digital elevation model by integrating cartographic and remotely sensed data: A geographic information system based approach. J. Geophys. Res., 104 , 2319923213.

    • Search Google Scholar
    • Export Citation
  • Manning, K. W., and C. A. Davis, 1997: Verification and sensitivity experiments for the WISP94 MM5 forecasts. Wea. Forecasting, 12 , 719735.

    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., P. J. DeMott, and W. R. Cotton, 1992: New primary ice-nucleation parameterizations in an explicit cloud model. J. Appl. Meteor., 31 , 708721.

    • Search Google Scholar
    • Export Citation
  • Neff, W. D., 1999: Decadal timescale trends and variability in the tropospheric circulation over the South Pole. J. Geophys. Res., 104 , 2721727252.

    • Search Google Scholar
    • Export Citation
  • Parish, T. R., and D. H. Bromwich, 1987: The surface wind field over the Antarctic ice sheets. Nature, 328 , 5154.

  • Parish, T. R., and K. T. Waight, 1987: The forcing of Antarctic katabatic winds. Mon. Wea. Rev., 115 , 22142226.

  • Parish, T. R., and D. H. Bromwich, 1991: Continental-scale simulations of the Antarctic katabatic wind regime. J. Climate, 4 , 135146.

    • Search Google Scholar
    • Export Citation
  • Phillpot, H. R., and J. W. Zillman, 1970: The surface temperature inversion over the Antarctic continent. J. Geophys. Res., 75 , 41614169.

    • Search Google Scholar
    • Export Citation
  • Pinto, J. O., and J. A. Curry, 1997: Role of radiative transfer in the modeled mesoscale development of summertime arctic stratus. J. Geophys. Res., 102 , 1386113872.

    • Search Google Scholar
    • Export Citation
  • Reisner, J., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124 , 10711107.

    • Search Google Scholar
    • Export Citation
  • Renfrew, I. A., J. C. King, and T. Markus, 2002: Coastal polynyas in the southern Weddell Sea: Variability in the surface energy budget. J. Geophys. Res., 107 (C6) 3063. doi: 10.1029/2000JC000720.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., 1990: Improvements in general-circulation model performance in simulating Antarctic climate. Antarct. Sci., 2 , 287300.

  • Stearns, C. R., L. M. Keller, G. A. Weidner, and M. Sievers, 1993: Monthly mean climatic data for Antarctic automatic weather stations. Antarctic Meteorology and Climatology: Studies Based on Automatic Weather Stations, D. H. Bromwich and C. R. Stearns, Eds., Antarctic Research Series, Vol. 61, Amer. Geophys. Union, 1–21.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Turner, J., and J. P. Thomas, 1994: Summer-season mesoscale cyclones in the Bellingshausen–Weddell region of the Antarctic and links with the synoptic-scale environment. Int. J. Climatol., 14 , 871894.

    • Search Google Scholar
    • Export Citation
  • Turner, J., and Coauthors. 1996: The Antarctic First Regional Observing Study of the Troposphere (FROST) project. Bull. Amer. Meteor. Soc., 77 , 20072032.

    • Search Google Scholar
    • Export Citation
  • Turner, J., S. Leonard, G. J. Marshall, M. Pook, L. Cowled, R. Jardine, S. Pendlebury, and N. Adams, 1999: An assessment of operational Antarctic analyses based on data from the FROST project. Wea. Forecasting, 14 , 817834.

    • Search Google Scholar
    • Export Citation
  • Tzeng, R. Y., D. H. Bromwich, T. R. Parish, and B. Chen, 1994: NCAR CCM2 simulation of the modern Antarctic climate. J. Geophys. Res., 99 , 2313123148.

    • Search Google Scholar
    • Export Citation
  • van den Broeke, M. R., 1996: The atmospheric boundary layer over ice sheets and glaciers. Ph.D. thesis, University of Utrecht, 178 pp.

  • van den Broeke, M. R., 1997: Spatial and temporal variation of sublimation on Antarctica: Results of a high-resolution general circulation model. J. Geophys. Res., 102 , 2976529777.

    • Search Google Scholar
    • Export Citation
  • van Lipzig, N. P. M., E. van Meijgaard, and J. Oerlemans, 1999: Evaluation of a regional atmospheric model using measurements of surface heat exchange processes from a site in Antarctica. Mon. Wea. Rev., 127 , 19942011.

    • Search Google Scholar
    • Export Citation
  • Vaughan, D. G., J. L. Bamber, M. Giovinetto, J. Russell, and A. P. R. Cooper, 1999: Reassessment of net surface mass balance in Antarctica. J. Climate, 12 , 933946.

    • Search Google Scholar
    • Export Citation
  • Walsh, K., and J. L. McGregor, 1996: Simulations of Antarctic climate using a limited area model. J. Geophys. Res., 101 , 1909319108.

  • Wendler, G., N. Ishikawa, and Y. Kodama, 1988: The heat balance of the icy slope of Adelie Land, eastern Antarctica. J. Appl. Meteor., 27 , 5265.

    • Search Google Scholar
    • Export Citation
  • Xu, J. S., H. von Storch, and H. van Loon, 1990: The performance of four spectral GCMs in the Southern Hemisphere: The January and July climatology and the semiannual wave. J. Climate, 3 , 5370.

    • Search Google Scholar
    • Export Citation
  • Yen, Y. C., 1981: Review of thermal properties of snow, ice and sea ice. CRREL Rep. 81-10, Cold Regions Research and Engineering Laboratory, Hanover, NH, 27 pp.

    • Search Google Scholar
    • Export Citation
  • Yoshiki, M., and K. Sato, 2000: A statistical study of gravity waves in the polar regions based on operational radiosonde data. J. Geophys. Res., 105 , 1799518011.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 121 59 9
PDF Downloads 73 41 7

Evaluation of Polar MM5 Simulations of Antarctic Atmospheric Circulation

View More View Less
  • 1 Polar Meteorology Group, Byrd Polar Research Center, and Atmospheric Sciences Program, Department of Geography, The Ohio State University, Columbus, Ohio
  • | 2 Polar Meteorology Group, Byrd Polar Research Center, The Ohio State University, Columbus, Ohio
Restricted access

Abstract

Evaluation of a complete annual cycle of nonhydrostatic mesoscale model simulations of the Antarctic atmospheric circulation is presented. The year-long time series are compiled from a series of overlapping short-duration (72 h) simulations of the atmospheric state with the first 24 h being discarded for spinup reasons, and the 24–72-h periods used for model evaluation. The simulations are generated with the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5), which is modified for polar applications, and is referred to as the Polar MM5. With a horizontal resolution of 60 km, the Polar MM5 has been run for the period of January 1993–December 1993, creating short-term simulations from initial and boundary conditions provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) Tropical Ocean Global Atmosphere (TOGA) operational analyses. The model output is compared with observations from automatic weather stations, upper-air data, and global atmospheric analyses as well as climatological maps over timescales from diurnal to annual. In comparison with the observations, the evaluation shows that simulations with the Polar MM5 capture both the large- and regional-scale circulation features with generally small bias in the modeled variables. For example, the differences between the observations and simulations at the 500-hPa level are usually less than 2°C for temperature and dewpoint temperature, and 20 m for geopotential height. On the annual timescale the largest errors in the model simulations are the deficient total cloud cover and precipitation, and the colder near-surface temperature over the interior of the Antarctic plateau. The deficiencies in the cloud prediction and precipitation simulation follow from low-level dry biases found in the Polar MM5 simulations, and the cold bias is related to the low predicted downward longwave radiation under clear skies in the radiation parameterization scheme. The deficient predicted precipitation also reflects the limited ability of Polar MM5 to represent clear sky precipitation. On the seasonal timescale a persistent positive pressure bias is found in the model simulations, caused by the interaction between the gravity waves and the model upper boundary condition. The observed synoptic variability of the pressure, temperature, wind speed, wind direction, and water vapor mixing ratio, as well as the diurnal cycles of temperature, wind speed, and mixing ratio, are reproduced by the Polar MM5 with reasonable accuracy.

Current affiliation: CIRES, University of Colorado, Boulder, Colorado

Corresponding author address: David H. Bromwich, Polar Meteorology Group, Byrd Polar Research Center, The Ohio State University, 1090 Carmack Rd., Columbus, OH 43210. Email: bromwich@polarmet1.mps.ohio-state.edu

Abstract

Evaluation of a complete annual cycle of nonhydrostatic mesoscale model simulations of the Antarctic atmospheric circulation is presented. The year-long time series are compiled from a series of overlapping short-duration (72 h) simulations of the atmospheric state with the first 24 h being discarded for spinup reasons, and the 24–72-h periods used for model evaluation. The simulations are generated with the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5), which is modified for polar applications, and is referred to as the Polar MM5. With a horizontal resolution of 60 km, the Polar MM5 has been run for the period of January 1993–December 1993, creating short-term simulations from initial and boundary conditions provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) Tropical Ocean Global Atmosphere (TOGA) operational analyses. The model output is compared with observations from automatic weather stations, upper-air data, and global atmospheric analyses as well as climatological maps over timescales from diurnal to annual. In comparison with the observations, the evaluation shows that simulations with the Polar MM5 capture both the large- and regional-scale circulation features with generally small bias in the modeled variables. For example, the differences between the observations and simulations at the 500-hPa level are usually less than 2°C for temperature and dewpoint temperature, and 20 m for geopotential height. On the annual timescale the largest errors in the model simulations are the deficient total cloud cover and precipitation, and the colder near-surface temperature over the interior of the Antarctic plateau. The deficiencies in the cloud prediction and precipitation simulation follow from low-level dry biases found in the Polar MM5 simulations, and the cold bias is related to the low predicted downward longwave radiation under clear skies in the radiation parameterization scheme. The deficient predicted precipitation also reflects the limited ability of Polar MM5 to represent clear sky precipitation. On the seasonal timescale a persistent positive pressure bias is found in the model simulations, caused by the interaction between the gravity waves and the model upper boundary condition. The observed synoptic variability of the pressure, temperature, wind speed, wind direction, and water vapor mixing ratio, as well as the diurnal cycles of temperature, wind speed, and mixing ratio, are reproduced by the Polar MM5 with reasonable accuracy.

Current affiliation: CIRES, University of Colorado, Boulder, Colorado

Corresponding author address: David H. Bromwich, Polar Meteorology Group, Byrd Polar Research Center, The Ohio State University, 1090 Carmack Rd., Columbus, OH 43210. Email: bromwich@polarmet1.mps.ohio-state.edu

Save