• Bromwich, D. H., 1989a: An extraordinary katabatic wind regime at Terra Nova Bay, Antarctica. Mon. Wea. Rev., 117 , 68895.

  • Bromwich, D. H., 1989b: Satellite analyses of Antarctic katabatic wind behavior. Bull. Amer. Meteor. Soc., 70 , 738749.

  • Bromwich, D. H., and J. J. Cassano, 2000: Recommendations to the National Science Foundation from the Antarctic Weather Forecasting Workshop. Byrd Polar Research Center Misc. Publ. M-42, The Ohio State University, Columbus, OH, 48 pp.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., and J. J. Cassano, 2001: Meeting summary: Antarctic Weather Forecasting Workshop. Bull. Amer. Meteor. Soc., 82 , 14091413.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., T. R. Parish, A. Pellegrini, C. R. Stearns, and G. A. Weidner, 1993: Spatial and temporal characteristics of the intense katabatic winds at Terra Nova Bay, Antarctica. Antarctic Meteorology and Climatology: Studies Based on Automatic Weather Stations, D. H. Bromwich and C. R. Stearns, Eds., Antarctic Research Series, Vol. 61, Amer. Geophys. Union, 47–68.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., J. J. Cassano, T. Klein, G. Heinemann, K. M. Hines, K. Steffen, and J. E. Box, 2001: Mesoscale modeling of katabatic winds over Greenland with the Polar MM5. Mon. Wea. Rev., 129 , 22902309.

    • Search Google Scholar
    • Export Citation
  • Carrasco, J. F., and D. H. Bromwich, 1995: A case study of a midtropospheric subsynoptic-scale cyclone that developed over the Ross Sea and Ross Ice Shelf of Antarctica. Antarct. Sci., 7 , 199210.

    • Search Google Scholar
    • Export Citation
  • Carrasco, J. F., and D. H. Bromwich, 1996: Mesoscale cyclone activity near Terra Nova Bay and Byrd Glacier, Antarctica during 1991. Global Atmos.–Ocean Syst., 5 , 4372.

    • Search Google Scholar
    • Export Citation
  • Cassano, J. J., J. E. Box, D. H. Bromwich, L. Li, and K. Steffen, 2001: Verification of Polar MM5 simulations of Greenland's atmospheric circulation. J. Geophys. Res., 106 , 3386733890.

    • Search Google Scholar
    • Export Citation
  • Castro, I. P., W. H. Snyder, and G. L. Marsh, 1983: Stratified flow over three-dimensional ridges. J. Fluid Mech., 135 , 261282.

  • Cooper, W. A., 1986: Ice initiation in natural clouds. Precipitation Enhancement—A Scientific Challenge, Meteor. Monogr., No. 43, Amer. Meteor. Soc., 29–32.

    • Search Google Scholar
    • Export Citation
  • Guo, Z., D. H. Bromwich, and J. J. Cassano, 2003: Evaluation of Polar MM5 simulations of Antarctic atmospheric circulation. Mon. Wea. Rev., 131 , 384411.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors. 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Nuss, W. A., and D. W. Titley, 1994: Use of multiquadric interpolation for meteorological objective analysis. Mon. Wea. Rev., 122 , 16111631.

    • Search Google Scholar
    • Export Citation
  • O'Connor, W. P., and D. H. Bromwich, 1988: Surface airflow around Windless Bight, Ross Island, Antarctica. Quart. J. Roy. Meteor. Soc., 114 , 917938.

    • Search Google Scholar
    • Export Citation
  • O'Connor, W. P., D. H. Bromwich, and J. F. Carrasco, 1994: Cyclonically forced barrier winds along the Transantarctic Mountains near Ross Island. Mon. Wea. Rev., 122 , 137150.

    • Search Google Scholar
    • Export Citation
  • Parish, T. R., and D. H. Bromwich, 1987: The surface windfield over the Antarctic ice sheets. Nature, 328 , 5154.

  • Phillpot, H. R., 1991: The derivation of 500 hPa height from automatic weather station surface observations in the Antarctic continental interior. Aust. Meteor. Mag., 39 , 7986.

    • Search Google Scholar
    • Export Citation
  • Stearns, C. R., and M. A. Lazzara, 1999: Six years of composite infra-red images south of Forty South at three hourly intervals. Abstracts, IUGG 99 Conf., Birmingham, United Kingdom, International Union of Geodesy and Geophysics, B119.

    • Search Google Scholar
    • Export Citation
  • Toniazzo, A., 1994: The Antarctic katabatic wind and its interaction with synoptic scale circulations in the Ross Sea. Ph.D. thesis, University of Milan, 150 pp.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 184 93 8
PDF Downloads 112 52 4

Antarctic Mesoscale Prediction System (AMPS): A Case Study from the 2000–01 Field Season

View More View Less
  • 1 Polar Meteorology Group, Byrd Polar Research Center, and Atmospheric Sciences Program, Department of Geography, The Ohio State University, Columbus, Ohio
  • | 2 Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research, Boulder, Colorado
  • | 3 Polar Meteorology Group, Byrd Polar Research Center, The Ohio State University, Columbus, Ohio
  • | 4 Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research, Boulder, Colorado
  • | 5 ENEA Antarctic Project, Rome, Italy
Restricted access

Abstract

To support the forecasting needs of the United States Antarctic Program at McMurdo, Antarctica, a special numerical weather prediction program, the Antarctic Mesoscale Prediction System (AMPS), was established for the 2000–01 field season. AMPS employs the Polar MM5, a version of the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) that has physics modifications for polar environments. This study assesses the performance of AMPS in forecasting an event of mesoscale cyclogenesis in the western Ross Sea during 13–17 January 2001. Observations indicate the presence of a complex trough having two primary mesoscale lows that merge to the east of Ross Island shortly after 0700 UTC 15 January. In contrast, AMPS predicts one primary mesoscale low throughout the event, incorrectly placing it until the 1800 UTC 15 January forecast, when the observed system carries a prominent signature in the initialization. The model reproduces the evolution of upper-level conditions in agreement with the observations and shows skill in resolving many small-scale surface features common to the region (i.e., katabatic winds; lows and highs induced by wind/topography). The AMPS forecasts can rely heavily on the representation of surface lows and upper-level forcing in the first-guess fields derived from NCEP's Aviation Model (AVN). Furthermore, even with relatively high spatial resolution, mesoscale models face observation-related limitations on performance that can be particularly acute in Antarctica.

+ Current affiliation: CIRES, University of Colorado, Boulder, Colorado

Corresponding author address: Dr. David H. Bromwich, Polar Meteorology Group, Byrd Polar Research Center, The Ohio State University, 1090 Carmack Rd., Columbus, OH 43210. Email: bromwich@polarmet1.mps.ohio-state.edu

Abstract

To support the forecasting needs of the United States Antarctic Program at McMurdo, Antarctica, a special numerical weather prediction program, the Antarctic Mesoscale Prediction System (AMPS), was established for the 2000–01 field season. AMPS employs the Polar MM5, a version of the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) that has physics modifications for polar environments. This study assesses the performance of AMPS in forecasting an event of mesoscale cyclogenesis in the western Ross Sea during 13–17 January 2001. Observations indicate the presence of a complex trough having two primary mesoscale lows that merge to the east of Ross Island shortly after 0700 UTC 15 January. In contrast, AMPS predicts one primary mesoscale low throughout the event, incorrectly placing it until the 1800 UTC 15 January forecast, when the observed system carries a prominent signature in the initialization. The model reproduces the evolution of upper-level conditions in agreement with the observations and shows skill in resolving many small-scale surface features common to the region (i.e., katabatic winds; lows and highs induced by wind/topography). The AMPS forecasts can rely heavily on the representation of surface lows and upper-level forcing in the first-guess fields derived from NCEP's Aviation Model (AVN). Furthermore, even with relatively high spatial resolution, mesoscale models face observation-related limitations on performance that can be particularly acute in Antarctica.

+ Current affiliation: CIRES, University of Colorado, Boulder, Colorado

Corresponding author address: Dr. David H. Bromwich, Polar Meteorology Group, Byrd Polar Research Center, The Ohio State University, 1090 Carmack Rd., Columbus, OH 43210. Email: bromwich@polarmet1.mps.ohio-state.edu

Save