Variational Assimilation of Radiometric Surface Temperature and Reference-Level Micrometeorology into a Model of the Atmospheric Boundary Layer and Land Surface

Steven A. Margulis Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, California

Search for other papers by Steven A. Margulis in
Current site
Google Scholar
PubMed
Close
and
Dara Entekhabi Ralph M. Parsons Laboratory, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Dara Entekhabi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Data assimilation provides a useful framework that allows us to combine measurements and models, by appropriately weighting the sources of error in both, to produce a statistically optimal and dynamically consistent estimate of the evolving state of the system. In this paper a variational approach is used to estimate regional land and atmospheric boundary layer states and fluxes via the assimilation of standard reference-level temperature and humidity and radiometric surface temperature measurements into a coupled land surface–atmospheric boundary layer model. Results from an application to a field experiment site show that using both surface temperature and reference-level micrometeorology measurements allows for the accurate and robust estimation of land surface fluxes even during nonideal conditions, where the evaporation rate is atmospherically controlled and processes that are not parameterized in the model (i.e., advection) are important. The assimilation scheme is able to provide estimates of model errors, which has implications for being able to diagnose structural model errors that may be present due to missing process representation and/or poor or biased parameterizations. Because robust estimates are not always obtainable with either measurement type in isolation, these results illustrate possible synergism that may exist when using multiple observation types.

Corresponding author address: Dr. Steven A. Margulis, Dept. of Civil and Environmental Engineering, 5732D Boelter Hall, UCLA, Los Angeles, CA 90095. Email: margulis@seas.ucla.edu

Abstract

Data assimilation provides a useful framework that allows us to combine measurements and models, by appropriately weighting the sources of error in both, to produce a statistically optimal and dynamically consistent estimate of the evolving state of the system. In this paper a variational approach is used to estimate regional land and atmospheric boundary layer states and fluxes via the assimilation of standard reference-level temperature and humidity and radiometric surface temperature measurements into a coupled land surface–atmospheric boundary layer model. Results from an application to a field experiment site show that using both surface temperature and reference-level micrometeorology measurements allows for the accurate and robust estimation of land surface fluxes even during nonideal conditions, where the evaporation rate is atmospherically controlled and processes that are not parameterized in the model (i.e., advection) are important. The assimilation scheme is able to provide estimates of model errors, which has implications for being able to diagnose structural model errors that may be present due to missing process representation and/or poor or biased parameterizations. Because robust estimates are not always obtainable with either measurement type in isolation, these results illustrate possible synergism that may exist when using multiple observation types.

Corresponding author address: Dr. Steven A. Margulis, Dept. of Civil and Environmental Engineering, 5732D Boelter Hall, UCLA, Los Angeles, CA 90095. Email: margulis@seas.ucla.edu

Save
  • Alapaty, K., N. L. Seaman, D. S. Niyogi, and A. F. Hanna, 2001: Assimilating surface data to improve the accuracy of atmospheric boundary layer simulations. J. Appl. Meteor., 40 , 20682082.

    • Search Google Scholar
    • Export Citation
  • Anderson, M. C., J. M. Norman, G. R. Diak, W. P. Kustas, and J. R. Mecikalski, 1997: A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing. Remote Sens. Environ., 60 , 195216.

    • Search Google Scholar
    • Export Citation
  • Bennett, A. F., B. S. Chua, D. E. Harrison, and M. J. McPhadden, 1998: Generalized inversion of tropical atmosphere–ocean data and a coupled model of the tropical Pacific. J. Climate, 11 , 17681792.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and J. H. Ball, 1998: FIFE surface climate and site-averaged dataset 1987–89. J. Atmos. Sci., 55 , 10911108.

  • Boni, G., F. Castelli, and D. Entekhabi, 2001: Sampling strategies and assimilation of ground temperature for the estimation of surface energy balance components. IEEE Trans. Geosci. Remote Sens., 39 , 165172.

    • Search Google Scholar
    • Export Citation
  • Bouttier, F., J-F. Mahfouf, and J. Noilhan, 1993: Sequential assimilation of soil moisture from atmospheric low-level parameters. Part II: Implementation in a mesoscale model. J. Appl. Meteor., 32 , 13521364.

    • Search Google Scholar
    • Export Citation
  • Bouyssel, F., V. Cassé, and J. Pailleux, 1999: Variational surface analysis from screen level atmospheric parameters. Tellus, 51A , 453468.

    • Search Google Scholar
    • Export Citation
  • Callies, U., A. Rhodin, and D. P. Eppel, 1998: A case study on variational soil moisture analysis from atmospheric observations. J. Hydrol., 212 , –213. 95108.

    • Search Google Scholar
    • Export Citation
  • Carlson, T., J. K. Dodd, S. G. Benjamin, and J. N. Cooper, 1981: Satellite estimation of the surface energy balance, moisture availability and thermal inertia. J. Appl. Meteor., 20 , 6787.

    • Search Google Scholar
    • Export Citation
  • Castelli, F., D. Entekhabi, and E. Caporali, 1999: Estimation of surface heat flux and an index of soil moisture using adjoint-state surface energy balance. Water Resour. Res., 10 , 31153125.

    • Search Google Scholar
    • Export Citation
  • Colello, G. D., C. Grivet, P. J. Sellers, and J. A. Berry, 1998: Modeling of energy, water, and CO2 flux in a temperate grassland ecosystem with SiB2: May–October 1987. J. Atmos. Sci., 55 , 11411169.

    • Search Google Scholar
    • Export Citation
  • Diak, G. R., and T. R. Stewart, 1989: Assessment of surface turbulent fluxes using geostationary satellite surface skin temperatures and a mixed layer planetary boundary layer model scheme. J. Geophys. Res., 94 , 63576373.

    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., H. Nakamura, and E. G. Njoku, 1994: Solving the inverse problem for soil moisture and temperature profiles by sequential assimilation of multifrequency remotely sensed observations. IEEE Trans. Geosci. Remote Sens., 32 , 438448.

    • Search Google Scholar
    • Export Citation
  • French, A. N., T. J. Schmugge, and W. P. Kustas, 2000: Estimating surface fluxes over the SGP site with remotely sensed data. Phys. Chem. Earth, 25B , 167172.

    • Search Google Scholar
    • Export Citation
  • Gillies, R. R., and T. N. Carlson, 1995: Thermal remote sensing of surface soil water content with partial vegetation cover for incorporation into climate models. J. Appl. Meteor., 34 , 745756.

    • Search Google Scholar
    • Export Citation
  • Hess, R., 2001: Assimilation of screen-level observations by variational soil moisture. Meteor. Atmos. Phys., 77 , 145154.

  • Jackson, T. J., D. M. LeVine, A. Y. Hsu, A. Oldak, P. J. Starks, C. T. Swift, J. D. Isham, and M. Haken, 1999: Soil moisture mapping at regional scales using microwave radiometry: The Southern Great Plains hydrology experiment. IEEE Trans. Geosci. Remote Sens., 37 , 21362151.

    • Search Google Scholar
    • Export Citation
  • Kustas, W. P., J. H. Preuger, K. S. Humes, and P. J. Starks, 1999: Estimation of surface heat fluxes at field scale using surface layer versus mixed-layer atmospheric variables with radiometric temperature observations. J. Appl. Meteor., 38 , 224238.

    • Search Google Scholar
    • Export Citation
  • Lakshmi, V., 2000: A simple surface temperature assimilation scheme for use in land surface models. Water Resour. Res., 36 , 36873700.

    • Search Google Scholar
    • Export Citation
  • Lakshmi, V., E. F. Wood, and B. J. Choudhury, 1997: Evaluation of special sensor microwave/imager satellite data for regional soil moisture estimation over the Red River basin. J. Appl. Meteor., 36 , 13091328.

    • Search Google Scholar
    • Export Citation
  • LeDimet, F-X., and O. Talagrand, 1986: Variational algorithms for analysis and assimilation of meteorological observation: Theoretical aspects. Tellus, 38A , 97110.

    • Search Google Scholar
    • Export Citation
  • Li, Y., I. M. Navon, P. Courtier, and P. Gauthier, 1993: Variational data assimilation with a semi-implicit global shallow water equation model and its adjoint. Mon. Wea. Rev., 121 , 17591769.

    • Search Google Scholar
    • Export Citation
  • Louis, J. F., M. Tiedtke, and J. F. Geleyn, 1982: A short history of the operational PBL parameterization at ECMWF. Proc. ECMWF Workshop on PBL Parameterization, Reading, United Kingdom, ECMWF, 59–80.

    • Search Google Scholar
    • Export Citation
  • Lu, J., and W. W. Hsieh, 1997: Adjoint data assimilation in coupled atmosphere–ocean models: Determining model parameters in a simple equatorial model. Quart. J. Roy. Meteor. Soc., 123 , 21152139.

    • Search Google Scholar
    • Export Citation
  • Mahfouf, J. F., 1991: Analysis of soil moisture from near-surface parameters: A feasibility study. J. Appl. Meteor., 30 , 15341547.

  • Margulis, S. A., 2002: Variational sensitivity analysis and data assimilation studies of the coupled land surface–atmospheric boundary layer system. Ph.D. thesis, Massachusetts Institute of Technology, 205 pp.

    • Search Google Scholar
    • Export Citation
  • Margulis, S. A., and D. Entekhabi, 2001: A coupled land surface–boundary layer model and its adjoint. J. Hydrometeor., 2 , 274296.

  • Margulis, S. A., D. McLaughlin, D. Entekhabi, and S. Dunne, 2002: Land data assimilation and estimation of soil moisture using measurements from the Southern Great Plains 1997 field experiment. Water Resour. Res., 38 , 1299. doi:10.1029/2001WR001114.

    • Search Google Scholar
    • Export Citation
  • McNider, R. T., A. J. Song, D. M. Casey, P. J. Wetzel, W. L. Crosson, and R. M. Rabin, 1994: Toward a dynamic–thermodynamic assimilation of satellite surface temperature in numerical atmospheric models. Mon. Wea. Rev., 122 , 27842803.

    • Search Google Scholar
    • Export Citation
  • Njoku, E. G., and D. Entekhabi, 1996: Passive microwave remote sensing of soil moisture. J. Hydrol., 184 , 101130.

  • Norman, J. M., W. P. Kustas, J. H. Prueger, and G. R. Diak, 2000: Surface flux estimation using radiometric temperature: A dual-temperature-difference method to minimize measurement errors. Water Resour. Res., 36 , 22632273.

    • Search Google Scholar
    • Export Citation
  • Reichle, R., 2000: Variational assimilation of remote sensing data for land surface hydrologic applications. Ph.D. thesis, Massachusetts Institute of Technology, 192 pp.

    • Search Google Scholar
    • Export Citation
  • Reichle, R., D. Entekhabi, and D. B. McLaughlin, 2001a: Downscaling of radiobrightness measurements for soil moisture estimation: A four-dimensional variational data assimilation approach. Water Resour. Res., 37 , 23532364.

    • Search Google Scholar
    • Export Citation
  • Reichle, R., D. McLaughlin, and D. Entekhabi, 2001b: Variational data assimilation of microwave radiobrightness observations for land surface hydrology applications. IEEE Trans. Geosci. Remote Sens., 39 , 17081718.

    • Search Google Scholar
    • Export Citation
  • Rhodin, A., F. Kucharski, U. Callies, D. P. Eppel, and W. Wergen, 1999: Variational analysis of effective soil moisture from screen-level atmospheric parameters: Applications to a short-range weather forecast model. Quart. J. Roy. Meteor. Soc., 125 , 24272448.

    • Search Google Scholar
    • Export Citation
  • Ruggiero, F. H., K. D. Sashegyi, R. V. Madala, and S. Raman, 1996: The use of surface observations in four-dimensional data assimilation using a mesoscale model. Mon. Wea. Rev., 124 , 10181033.

    • Search Google Scholar
    • Export Citation
  • Schmugge, T., and T. J. Jackson, 1994: Mapping of surface soil moisture with microwave radiometers. Meteor. Atmos. Phys., 54 , 213223.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., F. G. Hall, G. Asrar, D. E. Strebel, and R. E. Murphy, 1992: An overview of the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE). J. Geophys. Res., 97 (D17) 1834518371.

    • Search Google Scholar
    • Export Citation
  • Talagrand, O., and P. Courtier, 1987: Variational assimilation of meteorological observations with the adjoint vorticity equation. I: Theory. Quart. J. Roy. Meteor. Soc., 113 , 13111328.

    • Search Google Scholar
    • Export Citation
  • Tarantola, A., 1987: Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation. Elsevier, 630 pp.

  • Thacker, W. C., and R. B. Long, 1988: Fitting dynamics to data. J. Geophys. Res., 93 (C2) 12271240.

  • Vinnikov, K. Y., A. Robock, S. Qiu, J. K. Entin, M. Owe, B. J. Chodhury, S. E. Hollinger, and E. G. Njoku, 1999: Satellite remote sensing of soil moisture in Illinois, United States. J. Geophys. Res., 104 , 41454168.

    • Search Google Scholar
    • Export Citation
  • Wetzel, P. J., and R. H. Woodward, 1987: Soil moisture estimation using GOES–VISSR infrared data: A case study with a simple statistical method. J. Climate Appl. Meteor., 26 , 107117.

    • Search Google Scholar
    • Export Citation
  • Wetzel, P. J., D. Atlas, and R. H. Woodward, 1984: Determining soil moisture from geosynchronous satellite infrared data: A feasibility study. J. Climate Appl. Meteor., 23 , 375391.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 104 26 2
PDF Downloads 53 24 1