Three- and Four-Dimensional Variational Assimilation with a General Circulation Model of the Tropical Pacific Ocean. Part I: Formulation, Internal Diagnostics, and Consistency Checks

A. T. Weaver Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique/SUC URA 1875, Toulouse, France

Search for other papers by A. T. Weaver in
Current site
Google Scholar
PubMed
Close
,
J. Vialard European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom, and Laboratoire d'Oceanographie Dynamique et de Climatologie/CNRS/IRD/UPMC/MNHN, Paris, France

Search for other papers by J. Vialard in
Current site
Google Scholar
PubMed
Close
, and
D. L. T. Anderson European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Search for other papers by D. L. T. Anderson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Three- and four-dimensional variational assimilation (3DVAR and 4DVAR) systems have been developed for the Océan Parallélisé (OPA) ocean general circulation model (OGCM) of the Laboratoire d'Océanographie Dynamique et de Climatologie. An iterative incremental approach is used to minimize a cost function that measures the statistically weighted squared differences between the observational information and their model equivalent. The control variable of the minimization problem is an increment to the background estimate of the model initial conditions at the beginning of each assimilation window. In 3DVAR, the increment is transported between observation times within the window using a persistence model, while in 4DVAR a dynamical model derived from the tangent linear (TL) of the OGCM is used. Both the persistence and TL models are shown to provide reasonably good descriptions of the evolution of typical errors over the 10- and 30-day widths of the assimilation windows used in the authors' 3DVAR and 4DVAR experiments, respectively.

The present system relies on a univariate formulation of the background-error covariance matrix. In practice, the background-error covariances are specified implicitly within a change of control variable designed to improve the conditioning of the minimization problem. Horizontal and vertical correlation functions are modeled using a filter based on a numerical integration of a diffusion equation. The background-error variances are geographically dependent and specified from the model climatology. Single observation experiments are presented to illustrate how the TL dynamics act to modify these variances in a flow-dependent way by diminishing their values in the mixed layer and by displacing the maximum value of the variance to the level of the background thermocline.

The 3DVAR and 4DVAR systems have been applied to a tropical Pacific version of OPA and cycled over the period 1993–98 using in situ temperature observations from the Global Temperature and Salinity Pilot Programme. The overall effect of the data assimilation is to reduce a large bias in the thermal field, which was present in the control. The fit to the data in 4DVAR is better than in 3DVAR, and within the specified observation-error standard deviation. Intermittent updating of the linearization state of the TL model is shown to be an important feature of the incremental 4DVAR algorithm and contributes significantly to improving the fit to the data.

Corresponding author address: Dr. Anthony T. Weaver, CERFACS, 42 Ave. Gaspard Coriolis, 31057 Toulouse Cedex 1, France. Email: weaver@cerfacs.fr

Abstract

Three- and four-dimensional variational assimilation (3DVAR and 4DVAR) systems have been developed for the Océan Parallélisé (OPA) ocean general circulation model (OGCM) of the Laboratoire d'Océanographie Dynamique et de Climatologie. An iterative incremental approach is used to minimize a cost function that measures the statistically weighted squared differences between the observational information and their model equivalent. The control variable of the minimization problem is an increment to the background estimate of the model initial conditions at the beginning of each assimilation window. In 3DVAR, the increment is transported between observation times within the window using a persistence model, while in 4DVAR a dynamical model derived from the tangent linear (TL) of the OGCM is used. Both the persistence and TL models are shown to provide reasonably good descriptions of the evolution of typical errors over the 10- and 30-day widths of the assimilation windows used in the authors' 3DVAR and 4DVAR experiments, respectively.

The present system relies on a univariate formulation of the background-error covariance matrix. In practice, the background-error covariances are specified implicitly within a change of control variable designed to improve the conditioning of the minimization problem. Horizontal and vertical correlation functions are modeled using a filter based on a numerical integration of a diffusion equation. The background-error variances are geographically dependent and specified from the model climatology. Single observation experiments are presented to illustrate how the TL dynamics act to modify these variances in a flow-dependent way by diminishing their values in the mixed layer and by displacing the maximum value of the variance to the level of the background thermocline.

The 3DVAR and 4DVAR systems have been applied to a tropical Pacific version of OPA and cycled over the period 1993–98 using in situ temperature observations from the Global Temperature and Salinity Pilot Programme. The overall effect of the data assimilation is to reduce a large bias in the thermal field, which was present in the control. The fit to the data in 4DVAR is better than in 3DVAR, and within the specified observation-error standard deviation. Intermittent updating of the linearization state of the TL model is shown to be an important feature of the incremental 4DVAR algorithm and contributes significantly to improving the fit to the data.

Corresponding author address: Dr. Anthony T. Weaver, CERFACS, 42 Ave. Gaspard Coriolis, 31057 Toulouse Cedex 1, France. Email: weaver@cerfacs.fr

Save
  • Alves, J. O., M. A. Balmaseda, D. L. T. Anderson, and T. N. Stockdale, 2002: Sensitivity of dynamical seasonal forecasts to ocean initial conditions. ECMWF Tech. Memo. 369, 24 pp. [Available online at http://www.ecmwf.int/publications/.].

    • Search Google Scholar
    • Export Citation
  • Andersson, E., M. Fisher, R. Munro, and A. McNally, 2000: Diagnosis of background errors for radiances and other observable quantities in a variational data assimilation system, and the explanation of a case of poor convergence. Quart. J. Roy. Meteor. Soc., 126 , 14551472.

    • Search Google Scholar
    • Export Citation
  • Balmaseda, M., D. L. T. Anderson, and M. Davey, 1994: ENSO prediction using a dynamical ocean model coupled to statistical atmospheres. Tellus, 46A , 497511.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., M. Latif, N. Graham, M. Flugel, S. Pazan, and W. White, 1993: ENSO and ENSO-related predictability. Part I: Prediction of equatorial Pacific sea surface temperature with a hybrid coupled ocean–atmosphere model. J. Climate, 6 , 15451566.

    • Search Google Scholar
    • Export Citation
  • Behringer, D., M. Ji, and A. Leetma, 1998: An improved coupled model for ENSO prediction and implications for ocean initialization. Part I: The ocean data assimilation system. Mon. Wea. Rev., 126 , 10131021.

    • Search Google Scholar
    • Export Citation
  • Bennett, A. F., B. S. Chua, D. E. Harrison, and M. J. McPhaden, 2000: Generalized inversion of Tropical Atmosphere–Ocean (TAO) data using a coupled model of the tropical Pacific. J. Climate, 13 , 27702785.

    • Search Google Scholar
    • Export Citation
  • Bloom, S. C., L. L. Takacs, A. M. Da Silva, and D. Ledvina, 1996: Data assimilation using incremental analysis updates. Mon. Wea. Rev., 124 , 12561271.

    • Search Google Scholar
    • Export Citation
  • Bonekamp, H., G. J. van Oldenborgh, and G. Burgers, 2001: Variational assimilation of TAO and XBT data in the HOPE OGCM, adjusting the surface fluxes in the tropical ocean. J. Geophys. Res., 106 , 1669316709.

    • Search Google Scholar
    • Export Citation
  • Bryan, K., 1969: A numerical method for the study of the circulation of the world ocean. J. Comput. Phys., 4 , 347376.

  • Cane, M. A., S. E. Zebiak, and S. C. Dolan, 1986: Experimental forecasts of El Niño. Nature, 321 , 827832.

  • Courtier, P., J-N. Thépaut, and A. Hollingsworth, 1994: A strategy for operational implementation of 4DVAR, using an incremental approach. Quart. J. Roy. Meteor. Soc., 120 , 13671388.

    • Search Google Scholar
    • Export Citation
  • Courtier, P., and Coauthors. 1998: The ECMWF implementation of three dimensional variational assimilation (3DVAR). Part I: Formulation. Quart. J. Roy. Meteor. Soc., 124 , 17831808.

    • Search Google Scholar
    • Export Citation
  • Derber, J. C., and A. Rosati, 1989: A global oceanic data assimilation system. J. Phys. Oceanogr., 19 , 13331347.

  • Desroziers, G., and S. Ivanov, 2001: Diagnosis and adaptive tuning of observation error parameters in a variational assimilation. Quart. J. Roy. Meteor. Soc., 127 , 14331452.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., A. F. Bennett, and M. G. G. Foreman, 1994: TOPEX/Poseidon tides estimated using a global inverse model. J. Geophys. Res., 99 , 2482124852.

    • Search Google Scholar
    • Export Citation
  • Fisher, M., and E. Andersson, 2001: Developments in 4DVAR and Kalman filtering. ECMWF Tech. Memo. 347, 36 pp. [Available online at http://www.ecmwf.int/publications/.].

    • Search Google Scholar
    • Export Citation
  • Gandin, L. S., 1965: Objective Analysis of Meteorological Fields. Israeli Program for Scientific Translations, 242 pp.

  • Gauthier, P., C. Charette, L. Fillion, P. Koclas, and S. Laroche, 1999: Implementation of a 3D variational data assimilation system at the Canadian Meteorological Centre. Part I: The global analysis. Atmos.–Ocean, 37 , 103156.

    • Search Google Scholar
    • Export Citation
  • Gibson, J., P. Kållberg, S. Uppala, A. Noumura, A. Hernandez, and E. Serrano, 1997: ERA description. ECMWF Re-Analysis Project Report Series, No. 1, 77 pp. [Available online at http://www.ecmwf.int/research/era/ERA-15/Report_Series/.].

    • Search Google Scholar
    • Export Citation
  • Giering, R., and T. Kaminski, 1998: Recipes for adjoint code construction. ACM Trans. Math. Software, 24 , 437474.

  • Gilbert, J-C., and C. Lemaréchal, 1989: Some numerical experiments with variable-storage quasi-Newton algorithms. Math. Program., 45 , 407435.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Greiner, E., and S. Arnault, 2000: Comparing the results of a 4D-variational assimilation of satellite and in situ data with WOCE CITHER hydrographic measurements in the tropical Atlantic. Progress in Oceanography, Vol. 47, Pergamon Press, 1–68.

    • Search Google Scholar
    • Export Citation
  • Greiner, E., S. Arnault, and A. Morlière, 1998a: Twelve monthly experiments of 4D-variational assimilation in the tropical Atlantic during 1987: Part I: Method and statistical results. Progress in Oceanography, Vol. 41, Pergamon Press, 141–202.

    • Search Google Scholar
    • Export Citation
  • Greiner, E., S. Arnault, and A. Morlière, 1998b: Twelve monthly experiments of 4D-variational assimilation in the tropical Atlantic during 1987: Part II: Oceanographic interpretation. Progress in Oceanography, Vol. 41, Pergamon Press, 203–247.

    • Search Google Scholar
    • Export Citation
  • Grima, N., A. Bentamy, K. Katsaros, Y. Quilfen, P. Delecluse, and C. Lévy, 1999: Sensitivity study of an oceanic general circulation model forced by satellite wind-stress fields. J. Geophys. Res., 104 , 79677989.

    • Search Google Scholar
    • Export Citation
  • Hollingsworth, A., and P. Lönnberg, 1989: The verification of objective analyses: Diagnostics of analysis system performance. Meteor. Atmos., 40 , 327.

    • Search Google Scholar
    • Export Citation
  • Ide, K., P. Courtier, M. Ghil, and A. C. Lorenc, 1997: Unified notation for data assimilation: Operational, sequential and variational. J. Meteor. Soc. Japan, 75 , 181189.

    • Search Google Scholar
    • Export Citation
  • Janiskova, M., J-N. Thépaut, and J-F. Geleyn, 1999: Simplified and regular physical parametrizations for incremental four-dimensional variational assimilation. Mon. Wea. Rev., 127 , 2645.

    • Search Google Scholar
    • Export Citation
  • Ji, M., and A. Leetma, 1997: Impact of data assimilation on ocean initialization and El Niño prediction. Mon. Wea. Rev., 125 , 742753.

    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., M. C. Spillane, M. J. McPhaden, and D. E. Harrison, 1996: Scales of variability in the equatorial Pacific inferred from the Tropical Atmosphere–Ocean buoy array. J. Climate, 9 , 29993024.

    • Search Google Scholar
    • Export Citation
  • Laroche, S., and P. Gauthier, 1998: A validation of the incremental formulation of 4D variational data assimilation in a nonlinear barotropic flow. Tellus, 50A , 557572.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and M. Flügel, 1991: An investigation of short-range climate predictability in the tropical Pacific. J. Geophys. Res., 96 , 26612673.

    • Search Google Scholar
    • Export Citation
  • Le Dimet, F. X., and O. Talagrand, 1986: Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects. Tellus, 38A , 97110.

    • Search Google Scholar
    • Export Citation
  • Legeckis, R., 1977: Long waves in the eastern equatorial Pacific; a view from a geostationary satellite. Science, 197 , 11771181.

  • Levitus, S., 1982: Climatological Atlas of the World Ocean. NOAA Prof. Paper 13, 173 pp. and 17 microfiche.

  • Lorenc, A. C., 1981: A global three-dimensional multivariate statistical interpolation scheme. Mon. Wea. Rev., 109 , 701721.

  • Lorenc, A. C., and Coauthors. 2000: The Met. Office global three-dimensional variational data assimilation scheme. Quart. J. Roy. Meteor. Soc., 126 , 29913012.

    • Search Google Scholar
    • Export Citation
  • Madec, G., P. Delecluse, M. Imbard, and C. Lévy, 1998: OPA 8.1 Ocean General Circulation Model reference manual. LODYC/IPSL Technical Note 11, Paris, France, 91 pp. [Available online at http://www.lodyc.jussieu.fr/opa/.].

    • Search Google Scholar
    • Export Citation
  • Mahfouf, J-F., 1999: Influence of physical processes on the tangent-linear approximation. Tellus, 51A , 147166.

  • McCarty, M. E., L. J. Mangum, and M. J. McPhaden, 1997: Temperature errors in TAO data induced by mooring motion. NOAA Tech. Memo. ERL PMEL-108, 14 pp.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 1993: TOGA-TAO and the 1991-93 El Niño–Southern Oscillation event. Oceanography, 6 , 3644.

  • Ménard, R., and R. Daley, 1996: The application of Kalman smoother theory to the estimation of 4DVAR error statistics. Tellus, 48A , 221237.

    • Search Google Scholar
    • Export Citation
  • Meyers, G., H. Phillips, N. Smith, and J. Sprintall, 1991: Space and time scales for optimal interpolation of temperature—Tropical Pacific Ocean. Progress in Oceanography, Vol. 28, Pergamon Press, 189–218.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., and D. L. T. Anderson, 1994: Prospects for seasonal forecasting. Quart. J. Roy. Meteor. Soc., 120 , 755794.

  • Parrish, D. F., and J. C. Derber, 1992: The National Meteorological Center's spectral statistical interpolation analysis system. Mon. Wea. Rev., 120 , 17471763.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G., 1989: El Niño, La Niña, and the Southern Oscillation. Academic Press, 293 pp.

  • Rabier, F., A. McNally, E. Andersson, P. Courtier, P. Undén, J. Eyre, A. Hollingsworth, and F. Bouttier, 1998: The ECMWF implementation of three-dimensional variational assimilation (3DVAR). Part II: Structure functions. Quart. J. Roy. Meteor. Soc., 124 , 18091829.

    • Search Google Scholar
    • Export Citation
  • Rabier, F., H. Järvinen, E. Klinker, J. F. Mahfouf, and A. Simmons, 2000: The ECMWF operational implementation of four-dimensional variational assimilation. Part I: Experimental results with simplified physics. Quart. J. Roy. Meteor. Soc., 126 , 11431170.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimal interpolation. J. Climate, 7 , 929948.

    • Search Google Scholar
    • Export Citation
  • Rosati, A., K. Miyakoda, and R. Gudgel, 1997: The impact of ocean initial conditions on ENSO forecasting with a coupled model. Mon. Wea. Rev., 125 , 754772.

    • Search Google Scholar
    • Export Citation
  • Roullet, G., and G. Madec, 2000: Salt conservation, free surface, and varying levels: A new formulation for ocean general circulation models. J. Geophys. Res., 105 , 2392723942.

    • Search Google Scholar
    • Export Citation
  • Rutherford, I., 1972: Data assimilation by statistical interpolation of forecast error fields. J. Atmos. Sci., 29 , 809815.

  • Segschneider, J., D. L. T. Anderson, and T. N. Stockdale, 2000: Towards the use of altimetry for operational seasonal forecasting. J. Climate, 13 , 31163138.

    • Search Google Scholar
    • Export Citation
  • Segschneider, J., D. L. T. Anderson, J. Vialard, M. A. Balmaseda, and T. N. Stockdale, 2001: Initialization of seasonal forecasts assimilating sea level and temperature observations. J. Climate, 14 , 42924307.

    • Search Google Scholar
    • Export Citation
  • Smith, N. R., J. E. Blomley, and G. Meyers, 1991: A univariate statistical interpolation scheme for subsurface thermal analyses in the tropical oceans. Progress in Oceanography, Vol. 28, Pergamon Press, 219–256.

    • Search Google Scholar
    • Export Citation
  • Talagrand, O., 1991: The use of adjoint equations in numerical modeling of the atmospheric circulation. Automatic Differentiation of Algorithms: Theory, Implementation, and Application, A. Griewank and G. F. Corliss, Eds., SIAM, 169–180.

    • Search Google Scholar
    • Export Citation
  • Talagrand, O., and P. Courtier, 1987: Variational assimilation of meteorological observations with the adjoint vorticity equation. I: Theory. Quart. J. Roy. Meteor. Soc., 113 , 13111328.

    • Search Google Scholar
    • Export Citation
  • Tarantola, A., 1987: Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation. Elsevier, 613 pp.

  • Thacker, W. C., and R. B. Long, 1988: Fitting dynamics to data. J. Geophys. Res., 93 , 12271240.

  • Thépaut, J-N., R. N. Hoffman, and P. Courtier, 1993: Interactions of dynamics and observations in four-dimensional variational assimilation. Mon. Wea. Rev., 121 , 33933414.

    • Search Google Scholar
    • Export Citation
  • Thépaut, J-N., P. Courtier, G. Belaud, and G. LeMaître, 1996: Dynamical structure functions in a four-dimensional variational assimilation: A case study. Quart. J. Roy. Meteor. Soc., 122 , 535561.

    • Search Google Scholar
    • Export Citation
  • Tzipermann, E., W. C. Thacker, R. B. Long, and S-M. Hwang, 1992a: Oceanic data analysis using a general circulation model. Part I: Simulations. J. Phys. Oceanogr., 22 , 14341457.

    • Search Google Scholar
    • Export Citation
  • Tzipermann, E., W. C. Thacker, R. B. Long, S-M. Hwang, and S. R. Rintoul, 1992b: Oceanic data analysis using a general circulation model. Part II: A North Atlantic model. J. Phys. Oceanogr., 22 , 14581485.

    • Search Google Scholar
    • Export Citation
  • Vialard, J., C. Menkes, J-P. Boulanger, P. Delecluse, E. Guilyardi, M. J. McPhaden, and G. Madec, 2001: A model study of oceanic mechanisms affecting equatorial Pacific sea surface temperature during the 1997–98 El Niño. J. Phys. Oceanogr., 31 , 16491675.

    • Search Google Scholar
    • Export Citation
  • Vialard, J., A. T. Weaver, D. L. T. Anderson, and P. Delecluse, 2003: Three- and four-dimensional variational assimilation with a general circulation model of the tropical Pacific Ocean. Part II: Physical validation. Mon. Wea. Rev., 131 , 13791395.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. T., and P. Courtier, 2001: Correlation modelling on the sphere using a generalized diffusion equation. Quart. J. Roy. Meteor. Soc., 127 , 18151846.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. T., J. Vialard, D. L. T. Anderson, and P. Delecluse, 2002: Three- and four-dimensional variational assimilation with a general circulation model of the tropical Pacific Ocean. ECMWF Tech. Memo. 365, 74 pp. [Available online at http://www.ecmwf.int/publications/.].

    • Search Google Scholar
    • Export Citation
  • Xu, Q., 1996: Generalized adjoint for physical processes with parametrized discontinuities. Part I: Basic issues and heuristic examples. J. Atmos. Sci., 53 , 11231142.

    • Search Google Scholar
    • Export Citation
  • Zhu, J., and M. Kamachi, 2000: The role of time step size in numerical stability of tangent linear models. Mon. Wea. Rev., 128 , 15621572.

    • Search Google Scholar
    • Export Citation
  • Zou, X., 1997: Tangent-linear and adjoint of ‘on–off’ processes and their feasibility for use in 4-dimensional variational data assimilation. Tellus, 49A , 331.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 448 168 7
PDF Downloads 293 78 9