Monitoring the Monsoon in the Himalayas: Observations in Central Nepal, June 2001

Ana P. Barros Division of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts

Search for other papers by Ana P. Barros in
Current site
Google Scholar
PubMed
Close
and
Timothy J. Lang Division of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts

Search for other papers by Timothy J. Lang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Monsoon Himalayan Precipitation Experiment (MOHPREX) occurred during June 2001 along the south slopes of the Himalayas in central Nepal. Radiosondes were launched around the clock from two sites, one in the Marsyandi River basin on the eastern footslopes of the Annapurna range, and one farther to the southwest near the border with India. The flights supported rainfall and other hydrometeorological observations (including surface winds) from the Marsyandi network that has been operated in this region since the spring of 1999. The thermodynamic profiles obtained from the soundings support the observed nocturnal maximum in rainfall during the monsoon, with total column moisture and instability maximized just before rainfall peaks. Coinciding with the appearance of a monsoon depression over central India, the onset of the monsoon in this region was characterized by a weeklong weakening of the upper-level westerlies, and an increase in moisture and convective instability. The vertical structure of convection during the project was intense at times, and frequent thunder and lightning were observed. This is suggestive of monsoon break convection, which is expected to be predominant since the monsoon had not fully matured by the end of the month. Comparisons of the MOHPREX data with the NCEP–NCAR reanalysis data reveal that upper-level winds are characterized relatively well by the reanalysis, taking into account the coarse model topography. However, moisture is severely underestimated, leading to significant underestimation of rainfall by the reanalysis. The interaction of the ambient monsoon flow with the south slopes of the Himalayas, modulated by the diurnal variability of atmospheric state, is suggested as the primary cause of the nocturnal peak in rainfall.

Corresponding author address: Dr. Ana P. Barros, Division of Engineering and Applied Sciences, Harvard University, Pierce Hall 118, 29 Oxford St., Cambridge, MA 02138. Email: barros@deas.harvard.edu

Abstract

The Monsoon Himalayan Precipitation Experiment (MOHPREX) occurred during June 2001 along the south slopes of the Himalayas in central Nepal. Radiosondes were launched around the clock from two sites, one in the Marsyandi River basin on the eastern footslopes of the Annapurna range, and one farther to the southwest near the border with India. The flights supported rainfall and other hydrometeorological observations (including surface winds) from the Marsyandi network that has been operated in this region since the spring of 1999. The thermodynamic profiles obtained from the soundings support the observed nocturnal maximum in rainfall during the monsoon, with total column moisture and instability maximized just before rainfall peaks. Coinciding with the appearance of a monsoon depression over central India, the onset of the monsoon in this region was characterized by a weeklong weakening of the upper-level westerlies, and an increase in moisture and convective instability. The vertical structure of convection during the project was intense at times, and frequent thunder and lightning were observed. This is suggestive of monsoon break convection, which is expected to be predominant since the monsoon had not fully matured by the end of the month. Comparisons of the MOHPREX data with the NCEP–NCAR reanalysis data reveal that upper-level winds are characterized relatively well by the reanalysis, taking into account the coarse model topography. However, moisture is severely underestimated, leading to significant underestimation of rainfall by the reanalysis. The interaction of the ambient monsoon flow with the south slopes of the Himalayas, modulated by the diurnal variability of atmospheric state, is suggested as the primary cause of the nocturnal peak in rainfall.

Corresponding author address: Dr. Ana P. Barros, Division of Engineering and Applied Sciences, Harvard University, Pierce Hall 118, 29 Oxford St., Cambridge, MA 02138. Email: barros@deas.harvard.edu

Save
  • Banta, R. M., 1990: The role of mountain flows in making clouds. Atmospheric Processes over Complex Terrain, Meteor. Monogr., No. 45, Amer. Meteor. Soc., 229–283.

    • Search Google Scholar
    • Export Citation
  • Barros, A. P., and T. J. Lang, 2003: Exploring spatial modes of variability of terrain–atmosphere interactions in the Himalayas during monsoon onset. Hydrosciences Rep. Series 03-001, Division of Engineering and Applied Sciences, Harvard University, 51 pp.

    • Search Google Scholar
    • Export Citation
  • Barros, A. P., M. Joshi, J. Putkonen, and D. W. Burbank, 2000: A study of the 1999 monsoon rainfall in a mountainous region in central Nepal using TRMM products and rain gauge observations. Geophys. Res. Lett., 27 , 36833686.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., 1993: Observations and Theory of Weather Systems. Vol. II. Synoptic–Dynamic Meteorology in Midlatitudes, Oxford University Press, 594 pp.

    • Search Google Scholar
    • Export Citation
  • Bollasina, M., L. Bertolani, and G. Tartari, 2002: Meteorological observations at high altitude in the Khumbu Valley, Nepal Himalayas, 1994–1999. Bull. Glaciol. Res., 19 , 111.

    • Search Google Scholar
    • Export Citation
  • Burbank, D. W., and N. Pinter, 1999: Landscape evolution: The interactions of tectonics and surface processes. Basin Res., 11 , 16.

  • Chen, L., E. R. Reiter, and Z. Feng, 1985: The atmospheric heat source over the Tibetan Plateau: May–August 1979. Mon. Wea. Rev., 113 , 17711790.

    • Search Google Scholar
    • Export Citation
  • Chen, Y-L., and A. J. Nash, 1994: Diurnal variation of surface airflow and rainfall frequencies on the island of Hawaii. Mon. Wea. Rev., 122 , 3456.

    • Search Google Scholar
    • Export Citation
  • Cifelli, R., and S. A. Rutledge, 1998: Vertical motion, diabatic heating, and rainfall characteristics in north Australia convective systems. Quart. J. Roy. Meteor. Soc., 124 , 11331162.

    • Search Google Scholar
    • Export Citation
  • Collins, W. G., 2001: The operational complex quality control of radiosonde heights and temperatures at the National Centers for Environmental Prediction. Part II: Examples of error diagnosis and correction from operational use. J. Appl. Meteor., 40 , 152168.

    • Search Google Scholar
    • Export Citation
  • Egger, J., S. Bajrachaya, U. Egger, R. Heinrich, J. Reuder, P. Shayka, H. Wendt, and V. Wirth, 2000: Diurnal winds in the Himalayan Kali Gandaki valley. Part I: Observations. Mon. Wea. Rev., 128 , 11061122.

    • Search Google Scholar
    • Export Citation
  • EUMETSAT, 2000: The Meteosat System. EUM TD 05, European Organisation for the Exploitation of Meteorological Satellites.

  • Fitzjarrald, D. R., 1984: Katabatic wind in opposing flow. J. Atmos. Sci., 41 , 11431158.

  • He, H., J. W. McGinnis, Z. Song, and M. Yanai, 1987: Onset of the Asian monsoon in 1979 and the effect of the Tibetan Plateau. Mon. Wea. Rev., 115 , 19661995.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors. 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Krishnamurti, T. N., and C. M. Kishtawal, 2000: A pronounced continental-scale diurnal mode of the Asian summer monsoon. Mon. Wea. Rev., 128 , 462473.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15 , 809816.

    • Search Google Scholar
    • Export Citation
  • Kuo, H. L., and Y. F. Qian, 1981: Influence of the Tibetan Plateau on cumulative and diurnal changes of weather and climate in summer. Mon. Wea. Rev., 119 , 23372356.

    • Search Google Scholar
    • Export Citation
  • Lang, T. J., and A. P. Barros, 2002: An investigation of the onsets of the 1999 and 2000 monsoons in central Nepal. Mon. Wea. Rev., 130 , 12991316.

    • Search Google Scholar
    • Export Citation
  • Li, C., and M. Yanai, 1996: The onset and interannual variability of the Asian summer monsoon in relation to land–sea thermal contrast. J. Climate, 9 , 358375.

    • Search Google Scholar
    • Export Citation
  • Luo, H., and M. Yanai, 1983: The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part I: Precipitation and kinematic analyses. Mon. Wea. Rev., 111 , 922944.

    • Search Google Scholar
    • Export Citation
  • Luo, H., and M. Yanai, 1984: The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part II: Heat and moisture budgets. Mon. Wea. Rev., 112 , 966989.

    • Search Google Scholar
    • Export Citation
  • Magagi, R., and A. P. Barros, 2003: Latent heating of rainfall during the onset of the Indian Monsoon using TRMM-PR and radiosonde data. Hydrosciences Rep. Series 03-002, Division of Engineering and Applied Sciences, Harvard University, 56 pp.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., and M. J. Miller, 1976: The dynamics and simulation of tropical cumulonimbus and squall lines. Quart. J. Roy. Meteor. Soc., 102 , 373394.

    • Search Google Scholar
    • Export Citation
  • Murakami, T., 1987: Orography and monsoons. Monsoons, J. S. Fein and P. L. Stephens, Eds., John Wiley and Sons, 331–364.

  • Ohsawa, T., H. Ueda, T. Hayashi, A. Watanabe, and J. Matsumoto, 2001: Diurnal variations of convective activity and rainfall in tropical Asia. J. Meteor. Soc. Japan, 79 , 333352.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Petersen, W. A., S. A. Rutledge, and R. E. Orville, 1996: Cloud-to-ground lightning observations from TOGA COARE: Selected results and lightning location algorithms. Mon. Wea. Rev., 124 , 602620.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., E. R. Williams, and T. D. Keenan, 1992: The Down Under Doppler and Electricity Experiment (DUNDEE): Overview and preliminary results. Bull. Amer. Meteor. Soc., 73 , 316.

    • Search Google Scholar
    • Export Citation
  • Shrestha, A. B., C. P. Wake, J. E. Dibb, and P. A. Mayewski, 2000: Precipitation fluctuations in the Nepal Himalaya and its vicinity and relationship with some large scale climatological parameters. Int. J. Climatol., 20 , 317327.

    • Search Google Scholar
    • Export Citation
  • Shrestha, M. L., 2000: Interannual variation of summer monsoon rainfall over Nepal and its relation to the Southern Oscillation index. Meteor. Atmos. Phys., 75 , 2128.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., O. Bousquet, R. A. Houze Jr., B. F. Smull, and M. Mancini, 2003: Airflow within major alpine river valleys under heavy rainfall. Quart. J. Roy. Meteor. Soc., 129 , 411432.

    • Search Google Scholar
    • Export Citation
  • Ueno, K., and Coauthors. 2001: Meteorological observations during 1994–2000 at the Automatic Weather Station (GEN-AWS) in Khumbu region, Nepal Himalayas. Bull. Glaciol. Res., 18 , 2330.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., S. A. Rutledge, S. C. Geotis, N. Renno, E. Rasmussen, and T. Rickenbach, 1992: A radar and electrical study of tropical hot towers. J. Atmos. Sci., 49 , 13861395.

    • Search Google Scholar
    • Export Citation
  • Wu, G., and Y. Zhang, 1998: Tibetan Plateau forcing and the timing of the monsoon onset over south Asia and the South China Sea. Mon. Wea. Rev., 126 , 913927.

    • Search Google Scholar
    • Export Citation
  • Yatagai, A., 2001: Three-dimensional features of summer monsoon precipitation seen from TRMM/PR and latent heat release over south Asia. Albuquerque, NM, Amer. Meteor. Soc., Preprints, Symp. on Precipitation Extremes: Prediction, Impacts, and Responses, Albuquerque, NM, Amer. Meteor. Soc., 195–198.

    • Search Google Scholar
    • Export Citation
  • Ye, D., 1981: Some characteristics of the summer circulation over the Qinghai-Xizang (Tibet) Plateau and its neighborhood. Bull. Amer. Meteor. Soc., 62 , 1419.

    • Search Google Scholar
    • Export Citation
  • Zängl, G., J. Egger, and V. Wirth, 2001: Diurnal winds in the Himalayan Kali Gandaki valley. Part II: Modeling. Mon. Wea. Rev., 129 , 10621080.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 757 300 34
PDF Downloads 529 199 30