A Numerical Study of the Impact of Vertical Shear on the Distribution of Rainfall in Hurricane Bonnie (1998)

Robert Rogers Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School for Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Robert Rogers in
Current site
Google Scholar
PubMed
Close
,
Shuyi Chen Rosenstiel School for Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Shuyi Chen in
Current site
Google Scholar
PubMed
Close
,
Joseph Tenerelli Rosenstiel School for Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Joseph Tenerelli in
Current site
Google Scholar
PubMed
Close
, and
Hugh Willoughby NOAA/AOML/Hurricane Research Division, Miami, Florida

Search for other papers by Hugh Willoughby in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Despite the significant impacts of torrential rainfall from tropical cyclones at landfall, quantitative precipitation forecasting (QPF) remains an unsolved problem. A key task in improving tropical cyclone QPF is understanding the factors that affect the intensity and distribution of rainfall around the storm. These include the storm motion, topography, and orientation of the coast, and interactions with the environmental flow. The combination of these effects can produce rainfall distributions that may be nearly axisymmetric or highly asymmetric and rainfall amounts that range from 1 or 2 cm to >30 cm.

This study investigates the interactions between a storm and its environmental flow through a numerical simulation of Hurricane Bonnie (1998) that focuses on the role of vertical wind shear in governing azimuthal variations of rainfall. The simulation uses the high-resolution nonhydrostatic fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) to simulate the storm between 0000 UTC 22 August and 0000 UTC 27 August 1998. During this period significant changes in the vertical shear occurred in the simulation. It changed from strong west-southwesterly, and across track, to much weaker south-southwesterly, and along track. Nearly concurrently, the azimuthal distribution of convection changed from a distinct wavenumber-1 pattern to almost azimuthally symmetric by the end of the time period. The strongest convection in the core was generally located on the downshear left side of the shear vector when the shear was strong. The azimuthal distributions and magnitudes of low-level radial inflow, reflectivity, boundary layer divergence, and low-level vertical motion all varied consistently with the evolution of the vertical shear. Additionally, the vortex showed a generally downshear tilt from the vertical. The magnitude of the tilt correlated well with changes in magnitude of the environmental shear. The accumulated rainfall was distributed symmetrically across the track of the storm when the shear was strong and across track, and it was distributed asymmetrically across the track of the storm when the shear was weak and along track.

Corresponding author address: Dr. Robert Rogers, Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School for Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy., Miami, FL 33149. Email: rogers@aoml.noaa.gov

Abstract

Despite the significant impacts of torrential rainfall from tropical cyclones at landfall, quantitative precipitation forecasting (QPF) remains an unsolved problem. A key task in improving tropical cyclone QPF is understanding the factors that affect the intensity and distribution of rainfall around the storm. These include the storm motion, topography, and orientation of the coast, and interactions with the environmental flow. The combination of these effects can produce rainfall distributions that may be nearly axisymmetric or highly asymmetric and rainfall amounts that range from 1 or 2 cm to >30 cm.

This study investigates the interactions between a storm and its environmental flow through a numerical simulation of Hurricane Bonnie (1998) that focuses on the role of vertical wind shear in governing azimuthal variations of rainfall. The simulation uses the high-resolution nonhydrostatic fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) to simulate the storm between 0000 UTC 22 August and 0000 UTC 27 August 1998. During this period significant changes in the vertical shear occurred in the simulation. It changed from strong west-southwesterly, and across track, to much weaker south-southwesterly, and along track. Nearly concurrently, the azimuthal distribution of convection changed from a distinct wavenumber-1 pattern to almost azimuthally symmetric by the end of the time period. The strongest convection in the core was generally located on the downshear left side of the shear vector when the shear was strong. The azimuthal distributions and magnitudes of low-level radial inflow, reflectivity, boundary layer divergence, and low-level vertical motion all varied consistently with the evolution of the vertical shear. Additionally, the vortex showed a generally downshear tilt from the vertical. The magnitude of the tilt correlated well with changes in magnitude of the environmental shear. The accumulated rainfall was distributed symmetrically across the track of the storm when the shear was strong and across track, and it was distributed asymmetrically across the track of the storm when the shear was weak and along track.

Corresponding author address: Dr. Robert Rogers, Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School for Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy., Miami, FL 33149. Email: rogers@aoml.noaa.gov

Save
  • Bender, M. A., 1997: The effect of relative flow on the asymmetric structure of the interior of hurricanes. J. Atmos. Sci., 54 , 703724.

    • Search Google Scholar
    • Export Citation
  • Bender, M. A., and I. Ginnis, 2000: Real-time simulation of hurricane–ocean interaction using a high-resolution coupled model: Effects on hurricane intensity. Mon. Wea. Rev., 128 , 917946.

    • Search Google Scholar
    • Export Citation
  • Black, M. L., J. F. Gamache, F. D. Marks, C. E. Samsury, and H. E. Willoughby, 2002: Eastern Pacific Hurricanes Jimena of 1991 and Olivia of 1994: The effect of vertical shear on structure and intensity. Mon. Wea. Rev., 130 , 22912312.

    • Search Google Scholar
    • Export Citation
  • Black, P. G., 1983: Ocean temperature changes induced by tropical cyclones. Ph.D. dissertation, The Pennsylvania State University, State College, PA, 278 pp.

    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1979: High-resolution models of the planetary boundary layer. Advances in Environmental Science and Engineering, J. Pfafflin and E. Ziegler, Eds., Vol. 1, No. 1, Gordon and Breach, 50–85.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., and W-K. Tao, 2000: Sensitivity of high-resolution simulations of Hurricane Bob (1991) to planetary boundary layer parameterizations. Mon. Wea. Rev., 128 , 39413961.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., W. Zhao, J. E. Tenerelli, R. H. Evans, and V. Halliwell, 2001: Impact of the AVHRR sea surface temperature on atmospheric forcing in the Japan/East Sea. Geophys. Res. Lett., 28 , 45394545.

    • Search Google Scholar
    • Export Citation
  • Cione, J. J., P. G. Black, and S. H. Houston, 2000: Surface observations in the hurricane environment. Mon. Wea. Rev., 128 , 15501568.

    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., and J. Molinari, 2002: The effects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130 , 21102123.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53 , 20762087.

  • Delsol, F., K. Miyakoda, and R. H. Clarke, 1971: Parameterized processes in the surface boundary layer of an atmospheric circulation model. Quart. J. Roy. Meteor. Soc., 97 , 181208.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46 , 30773107.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1999: Thermodynamic control of hurricane intensity. Nature, 401 , 665669.

  • Frank, W. M., and E. A. Ritchie, 1999: Effects of environmental flow upon tropical cyclone structure. Mon. Wea. Rev., 127 , 20442061.

  • Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129 , 22492269.

    • Search Google Scholar
    • Export Citation
  • Franklin, J. L., S. J. Lord, S. E. Feuer, and F. D. Marks Jr., 1993: The kinematic structure of Hurricane Gloria (1985) determined from nested analyses of dropwindsonde and Doppler radar data. Mon. Wea. Rev., 121 , 24332451.

    • Search Google Scholar
    • Export Citation
  • Gamache, J. F., H. E. Willoughby, M. L. Black, and C. E. Samsury, 1997: Wind shear, sea surface temperature, and convection in hurricanes observed by airborne Doppler radar. Preprints, 22d Conf. Hurricanes and Tropical Meteorology, Fort Collins, CO, Amer. Meteor. Soc., 121–122.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances. Mon. Wea. Rev., 96 , 669700.

  • Grell, G. A., J. Dudhia, and D. R. Stauffer, 1994: A description of the fifth generation Penn State/NCAR Mesoscale Model (MM5) NCAR Tech. Note NCAR/TN-398 + STR, 138 pp.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 1995: The evolution of vortices in vertical shear: I: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121 , 821851.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 2000: The evolution of vortices in vertical shear: III: Baroclinic vortices. Quart. J. Roy. Meteor. Soc., 126 , 31613185.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., M. A. Bender, and R. J. Ross, 1993: An initialization scheme of hurricane models by vortex specification. Mon. Wea. Rev., 121 , 20302045.

    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., M. A. Bender, R. E. Tuleya, and R. J. Ross, 1995: Improvements in the GFDL hurricane prediction system. Mon. Wea. Rev., 123 , 27912801.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., D-L. Zhang, and M. K. Yau, 1997: A multiscale numerical study of Hurricane Andrew (1992). Part I: Explicit simulation and verification. Mon. Wea. Rev., 125 , 30733093.

    • Search Google Scholar
    • Export Citation
  • Malkus, J. S., C. Ronne, and M. Chafee, 1961: Cloud patterns in Hurricane Daisy, 1958. Tellus, 13 , 830.

  • Marks Jr., F. D., 1985: Evolution of the structure of precipitation in Hurricane Allen (1980). Mon. Wea. Rev., 113 , 909930.

  • Marks Jr., F. D., R. A. Houze Jr., and J. F. Gamache, 1992: Dual-aircraft investigation of the inner core of Hurricane Norbert. Part I: Kinematic structure. J. Atmos. Sci., 49 , 919942.

    • Search Google Scholar
    • Export Citation
  • Marks Jr., F. D., and L. K. Shay, PDT-5,. 1998: Landfalling tropical cyclones: Forecast problems and associated research opportunities. Bull. Amer. Meteor. Soc., 79 , 305323.

    • Search Google Scholar
    • Export Citation
  • Michalke, A., and A. Timme, 1967: On the inviscid instability of certain two-dimensional vortex-type flows. J. Fluid Mech., 29 , 647666.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and R. J. Kallenbach, 1997: A theory for vortex Rossby waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123 , 535565.

    • Search Google Scholar
    • Export Citation
  • Neldar, J. A., and R. Mead, 1965: A simplex method for function minimization. Comput. J., 7 , 308313.

  • Peng, M. S., B-F. Jeng, and R. T. Williams, 1999: A numerical study on tropical cyclone intensification. Part I: Beta effect and mean flow effect. J. Atmos. Sci., 56 , 14041423.

    • Search Google Scholar
    • Export Citation
  • Rappaport, E. N., M. Fuchs, and M. Lorenston, 1999: The threat to life in inland areas of the United States from Atlantic tropical cyclones. Preprints, 23d Conf. on Hurricanes and Tropical Meteorology, Dallas, TX, Amer. Meteor. Soc., 811–814.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 1992: Nonlinear balance and potential vorticity thinking at large Rossby number. Quart. J. Roy. Meteor. Soc., 118 , 9871015.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, F. D. Marks Jr., and J. F. Gamache, 2000: Low-wavenumber structure and evolution of the hurricane inner core observed by airborne dual-Doppler radar. Mon. Wea. Rev., 128 , 16531680.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., 1983: Asymmetric boundary layer flow under a translating hurricane. J. Atmos. Sci., 40 , 19841998.

  • Stauffer, D. R., and N. L. Seaman, 1990: Use of four-dimensional data assimilation in a limited-area mesoscale model. Part I: Experiments with synoptic-scale data. Mon. Wea. Rev., 118 , 12501277.

    • Search Google Scholar
    • Export Citation
  • Tenerelli, J. E., and S. S. Chen, 2000: Vortex-following mesh refinement for simulating hurricanes with MM5. Preprints, 10th PSU/NCAR Mesoscale Model User's Workshop, Boulder, CO, NCAR, 15–17.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1988: Linear motion of a shallow-water barotropic vortex. J. Atmos. Sci., 45 , 19061928.

  • Willoughby, H. E., F. D. Marks Jr., and R. J. Feinberg, 1984: Stationary and moving convective bands in hurricanes. J. Atmos. Sci., 41 , 31893211.

    • Search Google Scholar
    • Export Citation
  • Xiao, Q., X. Zou, and B. Wang, 2000: Initialization and simulation of a landfalling hurricane using a variational bogus data assimilation scheme. Mon. Wea. Rev., 128 , 22522269.

    • Search Google Scholar
    • Export Citation
  • Zhang, D-L., and R. A. Anthes, 1982: A high-resolution model of the planetary boundary layer—Sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteor., 21 , 15941609.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1123 498 49
PDF Downloads 407 115 10