Inflow Layer Energetics of Hurricane Bonnie (1998) near Landfall

Derek R. Wroe University of Hawaii at Manoa, Honolulu, Hawaii

Search for other papers by Derek R. Wroe in
Current site
Google Scholar
PubMed
Close
and
Gary M. Barnes University of Hawaii at Manoa, Honolulu, Hawaii

Search for other papers by Gary M. Barnes in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

On 26 August 1998, a NOAA WP-3D aircraft executed a curved track that mimics an inflow trajectory to the eyewall of Hurricane Bonnie. Global positioning system (GPS) sondes and airborne expendable bathythermographs jettisoned along the trajectory provide the observations to conduct an energy budget for the 1600-m-deep inflow to the eyewall. Surface fluxes are estimated via the bulk aerodynamic equations and the flux at the top of the inflow is solved as a residual.

From 170- to 125-km radial distance from the circulation center the mean θe of the inflow remains constant despite combined sensible and latent surface fluxes in excess of 500 W m−2. Convective cells remove energy from the inflow boundary layer at a rate similar to the inputs from the sea. From 125 to 100 km, in the annulus adjacent to the eyewall, mean θe increases 4.5 K in response to higher surface fluxes and little loss through the inflow top. Energy balance may be achieved by either entrainment of higher θe through the top of the inflow layer, or by inclusion of just half the estimated heat from viscous dissipation. The authors infer that the secondary circulation of the eyewall inhibits convective cells from forming in this region and thus facilitates the rapid increase of energy in the inflow. The results support hypotheses that hurricane intensity appears to be strongly modulated by energy exchange in a meso-β region adjacent to and under the eyewall.

Corresponding author address: G. M. Barnes, Dept. of Meteorology, University of Hawaii at Manoa, 2525 Correa Rd., Honolulu, HI 96822. Email: garyb@soest.hawaii.edu

Abstract

On 26 August 1998, a NOAA WP-3D aircraft executed a curved track that mimics an inflow trajectory to the eyewall of Hurricane Bonnie. Global positioning system (GPS) sondes and airborne expendable bathythermographs jettisoned along the trajectory provide the observations to conduct an energy budget for the 1600-m-deep inflow to the eyewall. Surface fluxes are estimated via the bulk aerodynamic equations and the flux at the top of the inflow is solved as a residual.

From 170- to 125-km radial distance from the circulation center the mean θe of the inflow remains constant despite combined sensible and latent surface fluxes in excess of 500 W m−2. Convective cells remove energy from the inflow boundary layer at a rate similar to the inputs from the sea. From 125 to 100 km, in the annulus adjacent to the eyewall, mean θe increases 4.5 K in response to higher surface fluxes and little loss through the inflow top. Energy balance may be achieved by either entrainment of higher θe through the top of the inflow layer, or by inclusion of just half the estimated heat from viscous dissipation. The authors infer that the secondary circulation of the eyewall inhibits convective cells from forming in this region and thus facilitates the rapid increase of energy in the inflow. The results support hypotheses that hurricane intensity appears to be strongly modulated by energy exchange in a meso-β region adjacent to and under the eyewall.

Corresponding author address: G. M. Barnes, Dept. of Meteorology, University of Hawaii at Manoa, 2525 Correa Rd., Honolulu, HI 96822. Email: garyb@soest.hawaii.edu

Save
  • Albrecht, B., and S. K. Cox, 1975: The large-scale response of the tropical atmosphere to cloud-modulated infrared heating. J. Atmos. Sci., 32 , 1624.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L., 1992: Sea spray and the turbulent air–sea heat fluxes. J. Geophys. Res., 97C , 1142911441.

  • Andreas, E. L., and J. DeCosmo, 1999: Sea spray production and influence on air–sea heat and moisture fluxes over open ocean. Air–Sea Exchange: Physics, Chemistry and Dynamics, G. L. Geernaert, Ed., Kluwer, 327–362.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L., and K. A. Emanuel, 2001: Effects of spray on tropical cyclone intensity. J. Atmos. Sci., 58 , 37413751.

  • Anthes, R. A., 1982: Tropical Cyclones—Their Evolution, Structure and Effects. Amer. Meteor. Soc., 208 pp.

  • Anthes, R. A., and S. W. Chang, 1978: Response of the hurricane boundary layer to changes of sea surface temperature in a numerical model. J. Atmos. Sci., 35 , 12401255.

    • Search Google Scholar
    • Export Citation
  • Barnes, G. M., and M. D. Powell, 1995: Evolution of the inflow boundary layer of Hurricane Gilbert (1988). Mon. Wea. Rev., 123 , 23482368.

    • Search Google Scholar
    • Export Citation
  • Barnes, G. M., and P. Bogner, 2001: Comments on “Surface observations in the hurricane environment.”. Mon. Wea. Rev., 129 , 12671269.

    • Search Google Scholar
    • Export Citation
  • Barnes, G. M., E. J. Zipser, D. Jorgensen, and F. D. Marks, 1983: Mesoscale and convective structure of a hurricane rainband. J. Atmos. Sci., 40 , 21252137.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and J. Simpson, 1987: Thermodynamic budget diagrams for the hurricane subcloud layer. J. Atmos. Sci., 44 , 842849.

  • Bister, M., and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteor. Atmos. Phys., 65 , 233240.

  • Black, P. G., and G. J. Holland, 1995: The boundary layer of Tropical Cyclone Kerry (1979). Mon. Wea. Rev., 123 , 20072028.

  • Bogner, P. B., G. M. Barnes, and J. L. Franklin, 2000: Conditional instability and shear for six hurricanes over the Atlantic Ocean. Wea. Forecasting, 15 , 192207.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2000: Moist absolute instability: The sixth static stability state. Bull. Amer. Meteor. Soc., 81 , 12071230.

    • Search Google Scholar
    • Export Citation
  • Businger, S., and J. A. Businger, 2001: Viscous dissipation of turbulent kinetic energy in storms. J. Atmos. Sci., 58 , 37933796.

  • Cione, J. J., P. G. Black, and S. H. Houston, 2000: Surface observations in the hurricane environment. Mon. Wea. Rev., 128 , 15501560.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones, Part 1: Steady-state maintenance. J. Atmos. Sci., 43 , 585604.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., J. D. Kepert, and G. J. Holland, 1994: The effect of sea spray on surface energy transports over the ocean. Global Atmos. Ocean Syst., 2 , 121142.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, 1996: Bulk parameterization of air–sea fluxes for Tropical Ocean Global Atmosphere Coupled Ocean Atmospheric Response Experiment. J. Geophys. Res., 101 , 37473764.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., 1977: The structure and energetics of the tropical cyclone. I. Storm structure. Mon. Wea. Rev., 105 , 11361150.

  • Frank, W. M., 1984: A composite analysis of the core of a mature hurricane. Mon. Wea. Rev., 112 , 24012420.

  • Hawkins, H. F., and D. T. Rubsam, 1968: Hurricane Hilda, 1964, II. Structure and budgets of the hurricane on October 1, 1964. Mon. Wea. Rev., 96 , 617636.

    • Search Google Scholar
    • Export Citation
  • Hawkins, H. F., and S. M. Imbembo, 1976: The structure of a small, intense Hurricane—Inez 1966. Mon. Wea. Rev., 104 , 418442.

  • Hock, T. F., and J. L. Franklin, 1999: The NCAR GPS dropwindsonde. Bull. Amer. Meteor. Soc., 80 , 407420.

  • Houston, S. H., P. P. Dodge, M. D. Powell, M. L. Black, G. M. Barnes, and P. S. Chu, 2000: Surface winds in hurricanes from GPS-sondes: Comparisons with observations. Preprints, 24th Conf. on Hurricanes and Tropical Meteorology, Fort Lauderdale, FL, Amer. Meteor. Soc., 339.

    • Search Google Scholar
    • Export Citation
  • Jordan, C. L., and E. S. Jordan, 1954: On the mean thermal structure of tropical cyclones. J. Meteor., 11 , 440448.

  • Jorgensen, D. P., 1984: Mesoscale and convective-scale characteristics of mature hurricanes. Part II: Inner core structure of Hurricane Allen (1980). J. Atmos. Sci., 41 , 12871311.

    • Search Google Scholar
    • Export Citation
  • Korolev, V. S., S. A. Petrichenko, and V. D. Pudov, 1990: Heat and moisture exchange between the ocean and atmosphere in Tropical Storms Tess and Skip. Sov. Meteor. Hydrol. (English translation),, 3 , 9294.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. Pond, 1982: Sensible and latent heat fluxes over the ocean. J. Phys. Oceanogr., 12 , 464482.

  • Malkus, J. S., and H. Riehl, 1960: On the dynamics and energy transformation in steady-state hurricanes. Tellus, 12 , 120.

  • Marks Jr., F. D., 1985: Evolution of the structure of precipitation in Hurricane Allen (1980). Mon. Wea. Rev., 113 , 909930.

  • Marks Jr., F. D., and R. A. Houze Jr., 1987: Inner core structure of Hurricane Alicia from airborne Doppler radar observations. J. Atmos. Sci., 44 , 12961317.

    • Search Google Scholar
    • Export Citation
  • Marks Jr., F. D., R. A. Houze Jr., and J. F. Gamache, 1992: Dual-aircraft investigation of the inner core of Hurricane Norbert. Part I: Kinematic structure. J. Atmos. Sci., 49 , 919942.

    • Search Google Scholar
    • Export Citation
  • Miller, B. I., 1962: On the momentum and energy balance of Hurricane Helene (1958). National Hurricane Research Project Rep. 53, 19 pp.

  • Palmen, E., and C. W. Newton, 1969: Atmospheric Circulation Systems. Academic Press, 603 pp.

  • Powell, M. D., 1990a: Boundary layer structure and dynamics in outer hurricane rainbands. Part I. Mesoscale rainfall and kinematic structure. Mon. Wea. Rev., 118 , 891917.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., 1990b: Boundary layer structure and dynamics in outer hurricane rainbands. Part II: Downdraft modification and mixed layer recovery. Mon. Wea. Rev., 118 , 918938.

    • Search Google Scholar
    • Export Citation
  • Riehl, H., 1951: Aerology of Storms. Compendium of Meteorology, T. F. Malone, Ed., Amer. Meteor. Soc., 902–913.

  • Riehl, H., 1954: Tropical Meteorology. McGraw-Hill, 392 pp.

  • Riehl, H., and J. S. Malkus, 1961: Some aspects of Hurricane Daisy, 1958. Tellus, 13 , 181213.

  • Rotunno, R., and K. A. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44 , 542561.

    • Search Google Scholar
    • Export Citation
  • Shay, L. K., G. J. Goni, and P. G. Black, 2000: Effects of a warm oceanic feature on Hurricane Opal. Mon. Wea. Rev., 128 , 13661383.

  • Sheets, R. C., 1969: Some mean hurricane soundings. J. Appl. Meteor., 8 , 134146.

  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer, 666 pp.

  • Wang, Y., 1999: A triply-nested movable mesh tropical cyclone model with explicit cloud microphysics. BMRC Research Rep. 74, Bureau of Meteorology Research Centre, 81 pp.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., J. D. Kepert, and G. J. Holland, 2001: The effect of sea spray evaporation on tropical cyclone boundary layer structure and intensity. Mon. Wea. Rev., 129 , 24812500.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., F. D. Marks, and R. J. Feinberg, 1984: Stationary and moving convective bands in hurricanes. J. Atmos. Sci., 41 , 31893211.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 144 58 1
PDF Downloads 94 27 0