Assimilation of Simulated Doppler Radar Observations with an Ensemble Kalman Filter

Chris Snyder National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Chris Snyder in
Current site
Google Scholar
PubMed
Close
and
Fuqing Zhang Department of Atmospheric Science, Texas A&M University, College Station, Texas

Search for other papers by Fuqing Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Assimilation of Doppler radar data into cloud models is an important obstacle to routine numerical weather prediction for convective-scale motions; the difficulty lies in initializing fields of wind, temperature, moisture, and condensate given only observations of radial velocity and reflectivity from the radar. This paper investigates the potential of the ensemble Kalman filter (EnKF), which estimates the covariances between observed variables and the state through an ensemble of forecasts, to assimilate radar observations at convective scales. In the basic experiment, simulated observations are extracted from a reference simulation of a splitting supercell and assimilated using the EnKF and the same numerical model that produced the reference simulation. The EnKF produces accurate analyses, including the unobserved variables, after roughly 30 min (or six scans) of radial velocity observations. Additional experiments, in which forecasts are made from the ensemble-mean analysis, reveal that forecast errors grow significantly in this simple system, so that the ability of the EnKF to track the reference solution is not simply because of stable system dynamics. It is also found that the covariances between radial velocity and temperature, moisture, and condensate are important to the quality of the analyses, as is the initialization chosen for the ensemble members prior to assimilating the first observations. These results are promising, especially given the ease of implementing the EnKF. A number of important issues remain, however, including the initialization of the ensemble prior to the first observation, the treatment of uncertainty in the environmental sounding, the role of error in the forecast model (particularly the microphysical parameterizations), and the treatment of lateral boundary conditions.

Corresponding author address: Dr. C. Snyder, NCAR, P.O. Box 3000, Boulder, CO 80307-3000. Email: chriss@ucar.edu

Abstract

Assimilation of Doppler radar data into cloud models is an important obstacle to routine numerical weather prediction for convective-scale motions; the difficulty lies in initializing fields of wind, temperature, moisture, and condensate given only observations of radial velocity and reflectivity from the radar. This paper investigates the potential of the ensemble Kalman filter (EnKF), which estimates the covariances between observed variables and the state through an ensemble of forecasts, to assimilate radar observations at convective scales. In the basic experiment, simulated observations are extracted from a reference simulation of a splitting supercell and assimilated using the EnKF and the same numerical model that produced the reference simulation. The EnKF produces accurate analyses, including the unobserved variables, after roughly 30 min (or six scans) of radial velocity observations. Additional experiments, in which forecasts are made from the ensemble-mean analysis, reveal that forecast errors grow significantly in this simple system, so that the ability of the EnKF to track the reference solution is not simply because of stable system dynamics. It is also found that the covariances between radial velocity and temperature, moisture, and condensate are important to the quality of the analyses, as is the initialization chosen for the ensemble members prior to assimilating the first observations. These results are promising, especially given the ease of implementing the EnKF. A number of important issues remain, however, including the initialization of the ensemble prior to the first observation, the treatment of uncertainty in the environmental sounding, the role of error in the forecast model (particularly the microphysical parameterizations), and the treatment of lateral boundary conditions.

Corresponding author address: Dr. C. Snyder, NCAR, P.O. Box 3000, Boulder, CO 80307-3000. Email: chriss@ucar.edu

Save
  • Anderson, J. L., 2001: An ensemble adjustment filter for data assimilation. Mon. Wea. Rev., 129 , 28842903.

  • Brusdal, K., J. M. Brankart, G. Halberstadt, G. Evensen, P. Brasseur, P. J. van Leeuwen, E. Dombrowsky, and J. Verron, 2003: A demonstration of ensemble based assimilation methods with a layered OGCM from the perspective of operational ocean forecasting systems. J. Mar. Syst., 40 , –41. 253289.

    • Search Google Scholar
    • Export Citation
  • Cohn, S. E., 1997: An introduction to estimation theory. J. Meteor. Soc. Japan, 75 , 257288.

  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99 (C5) 1014310162.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and C. Snyder, 2000: A hybrid ensemble Kalman filter/3D-variational analysis scheme. Mon. Wea. Rev., 128 , 29052919.

  • Hamill, T. M., J. S. Whitaker, and C. Snyder, 2001: Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Wea. Rev., 129 , 27762790.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126 , 796811.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 2001: A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 129 , 123137.

    • Search Google Scholar
    • Export Citation
  • Ide, K., P. Courtier, M. Ghil, and A. C. Lorenc, 1997: Unified notation for data assimilation: Operational, sequential, and variational. J. Meteor. Soc. Japan, 75 , 181189.

    • Search Google Scholar
    • Export Citation
  • Keppenne, C. L., and M. M. Rienecker, 2002: Initial testing of a massively parallel ensemble Kalman filter with the Poseidon isopycnal ocean general circulation model. Mon. Wea. Rev., 130 , 29512965.

    • Search Google Scholar
    • Export Citation
  • Leith, C. E., 1983: Predictability in theory and practice. Large-Scale Dynamical Processes in the Atmosphere, B. J. Hoskins and R. P. Pearce, Eds., Academic Press, 365–383.

    • Search Google Scholar
    • Export Citation
  • Mitchell, H. L., and P. L. Houtekamer, 2000: An adaptive ensemble Kalman filter. Mon. Wea. Rev., 128 , 416433.

  • Mitchell, H. L., P. L. Houtekamer, and G. Pelerin, 2002: Ensemble size, balance, and model-error representation in an ensemble Kalman filter. Mon. Wea. Rev., 130 , 27912808.

    • Search Google Scholar
    • Export Citation
  • Montmerle, T., A. Caya, and I. Zawadzki, 2001: Simulation of a midlatitude convective storm initialized with bistatic Doppler radar data. Mon. Wea. Rev., 129 , 19491967.

    • Search Google Scholar
    • Export Citation
  • Murphy, J. M., 1988: The impact of ensemble forecasts on predictability. Quart. J. Roy. Meteor. Soc., 114 , 463493.

  • Rabier, F., H. Järvinen, E. Klinker, J-F. Mahfouf, and A. Simmons, 2000: The ECMWF operational implementation of four-dimensional variational assimilation. Part I: Experimental results with simplified physics. Quart. J. Roy. Meteor. Soc., 126 , 11431170.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and N. A. Crook, 1997: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci., 54 , 16421661.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and N. A. Crook, 1998: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part II: Retrieval experiments of an observed Florida convective storm. J. Atmos. Sci., 55 , 835852.

    • Search Google Scholar
    • Export Citation
  • van Leeuwen, P. J., 1999: Comments on “Data assimilation using an ensemble Kalman filter technique.”. Mon. Wea. Rev., 127 , 13741377.

    • Search Google Scholar
    • Export Citation
  • Weygandt, S. S., A. Shapiro, and K. K. Droegemeier, 2002: Retrieval of model initial fields from single-Doppler observations of a supercell thunderstorm. Part I: Single-Doppler velocity retrieval. Mon. Wea. Rev., 130 , 433453.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130 , 19131924.

  • Xu, Q., H. D. Gu, and S. Yang, 2001: Simple adjoint method for three-dimensional wind retrievals from single-Doppler data. Quart. J. Roy. Meteor. Soc., 127 , 10531067.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 908 317 30
PDF Downloads 532 124 14