Cell Merger Potential in Multicell Thunderstorms of Weakly Sheared Environments: Cell Separation Distance versus Planetary Boundary Layer Depth

James R. Stalker Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico

Search for other papers by James R. Stalker in
Current site
Google Scholar
PubMed
Close
and
Kevin R. Knupp Department of Atmospheric Sciences, University of Alabama in Huntsville, National Space Science and Technology Center, Huntsville, Alabama

Search for other papers by Kevin R. Knupp in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Using high-resolution three-dimensional numerical experiments, this paper shows that the cell separation distance scales as 0.75 times the planetary boundary layer (PBL) depth for successful cell mergers between constructively interacting cells within multicell thunderstorms. This boundary layer scaling is determined from several simulations of convective cell pairs with a fixed PBL depth and is shown to be valid for other sensitivity simulations with larger PBL depths. This research establishes a robust and quantitative relation between prestorm ambient conditions and cell merger potential useful for research efforts on the multifaceted cell merger process of multicell thunderstorms. The weakly sheared ambient prestorm conditions of the 9 August 1991 Convection and Precipitation/Electrification Experiment (CaPE) multicell thunderstorm are used to initialize the cell pair simulations.

Since ambient wind and wind shear are assumed to be zero, only simple cell mergers, defined in this study as those between cell updraft cores joined but not overlapping in the convective stage, are shown to be possible. The coarse-resolution simulations of Stalker suggest that ambient wind shear may be necessary for forced cell mergers, defined in this study as those in which the initial updraft cores are found apart. The scenarios of overlapping initial updraft cores for cell merger are considered physically invalid in this study.

Corresponding author address: Dr. James R. Stalker, Los Alamos National Laboratory, EES-8, Mail Stop D401, Los Alamos, NM 87545. Email: stalker@lanl.gov

Abstract

Using high-resolution three-dimensional numerical experiments, this paper shows that the cell separation distance scales as 0.75 times the planetary boundary layer (PBL) depth for successful cell mergers between constructively interacting cells within multicell thunderstorms. This boundary layer scaling is determined from several simulations of convective cell pairs with a fixed PBL depth and is shown to be valid for other sensitivity simulations with larger PBL depths. This research establishes a robust and quantitative relation between prestorm ambient conditions and cell merger potential useful for research efforts on the multifaceted cell merger process of multicell thunderstorms. The weakly sheared ambient prestorm conditions of the 9 August 1991 Convection and Precipitation/Electrification Experiment (CaPE) multicell thunderstorm are used to initialize the cell pair simulations.

Since ambient wind and wind shear are assumed to be zero, only simple cell mergers, defined in this study as those between cell updraft cores joined but not overlapping in the convective stage, are shown to be possible. The coarse-resolution simulations of Stalker suggest that ambient wind shear may be necessary for forced cell mergers, defined in this study as those in which the initial updraft cores are found apart. The scenarios of overlapping initial updraft cores for cell merger are considered physically invalid in this study.

Corresponding author address: Dr. James R. Stalker, Los Alamos National Laboratory, EES-8, Mail Stop D401, Los Alamos, NM 87545. Email: stalker@lanl.gov

Save
  • Atkins, N. T., and R. M. Wakimoto, 1995: Observations of the sea-breeze front during CaPE. Part II: Dual-Doppler and aircraft analysis. Mon. Wea. Rev., 123 , 944969.

    • Search Google Scholar
    • Export Citation
  • Blanchard, D. O., and R. E. Lopez, 1985: Spatial patterns of convection in south Florida. Mon. Wea. Rev., 113 , 12821299.

  • Bluestein, H. B., J. G. LaDue, H. Stein, H. Speheger, and W. F. Unruh, 1993: Doppler radar spectra of supercell tornadoes. Mon. Wea. Rev., 121 , 22002222.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., K. R. Knupp, A. Detwiler, L. Liu, and R. A. Black, 1997: Evolution of a Florida thunderstorm during the Convection and Precipitation/Electrification Experiment: The case of 9 August 1991. Mon. Wea. Rev., 125 , 21312160.

    • Search Google Scholar
    • Export Citation
  • Byers, H. R., and R. R. Braham, 1949: The thunderstorm project. U.S. Weather Bureau, 287 pp.

  • Changnon, S. A., 1976: Effects of urban areas and echo merging on radar echo behavior. J. Appl. Meteor., 15 , 561570.

  • Changnon, S. A., K. R. Gabriel, N. E. Westcott, and R. R. Czys, 1995: Exploratory analysis of seeding effects on rainfall: Illinois 1989. J. Appl. Meteor., 34 , 12151224.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., and G. J. Tripoli, 1978: Cumulus convection in shear flow—three-dimensional numerical experiments. J. Atmos. Sci., 35 , 15031521.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., M. A. Stephens, T. Nehrkorn, and G. J. Tripoli, 1982: The Colorado State University three-dimensional cloud/mesoscale model—1982. Part II: An ice-phase parameterization. J. Rech. Atmos., 16 , 295320.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., G. J. Tripoli, R. M. Rauber, and E. A. Mulvihill, 1986: Numerical simulation of the effects of varying ice crystal nucleation rates and aggregation processes on orographic snowfall. J. Climate Appl. Meteor., 25 , 16581680.

    • Search Google Scholar
    • Export Citation
  • Cunning, J. B., and M. DeMaria, 1986: An investigation of development of cumulonimbus systems over South Florida. Part I: Boundary layer interactions. Mon. Wea. Rev., 114 , 524.

    • Search Google Scholar
    • Export Citation
  • Cunning, J. B., R. H. Holle, P. T. Gannon, and A. I. Watson, 1982: Convective evolution and merger in the FACE experimental area: Mesoscale convection and boundary layer interactions. J. Appl. Meteor., 21 , 953977.

    • Search Google Scholar
    • Export Citation
  • Czys, R. R., S. A. Changnon, N. E. Westcott, R. W. Scott, and M. S. Petersen, 1995: Responses of warm-based, midwest cumulus congestus to dynamic seeding trials. J. Appl. Meteor., 34 , 11941214.

    • Search Google Scholar
    • Export Citation
  • Flatau, P. J., G. J. Tripoli, J. Verlinde, and W. R. Cotton, 1989: The CSU-RAMS cloud microphysical module: General theory and code documentation. Atmospheric Science Paper 451, Dept. of Atmospheric Science, Colorado State University, 88 pp.

    • Search Google Scholar
    • Export Citation
  • Foote, G. B., 1985: Aspects of cumulonimbus classification relevant to the hail problem. J. Rech. Atmos., 19 , 6174.

  • Harrington, J. Y., M. P. Meyers, R. L. Walko, and W. R. Cotton, 1995: Parameterization of ice crystal conversion processes due to vapor deposition for mesoscale models using double-moment basis functions. Part 1: Basic formulation and parcel model results. J. Atmos. Sci., 52 , 43444366.

    • Search Google Scholar
    • Export Citation
  • Hill, G. E., 1974: Factors controlling the size and spacing of cumulus clouds as revealed by numerical experiments. J. Atmos. Sci., 31 , 646673.

    • Search Google Scholar
    • Export Citation
  • Holle, R. L., and M. W. Maier, 1980: Tornado formation from downdraft interaction in the FACE mesonetwork. Mon. Wea. Rev., 108 , 9911009.

    • Search Google Scholar
    • Export Citation
  • Houze Jr., R. A., and C-P. Cheng, 1977: Radar characteristics of tropical convection observed during GATE: Mean properties and trends over the summer season. Mon. Wea. Rev., 105 , 964980.

    • Search Google Scholar
    • Export Citation
  • Knupp, K. R., 1985: Precipitating convective downdraft structure: A synthesis of observations and modeling. Ph.D. dissertation, Colorado State University, Atmospheric Science Paper 387, 296 pp.

    • Search Google Scholar
    • Export Citation
  • Knupp, K. R., J. R. Stalker, and E. W. McCaul Jr., 1998: An observational and numerical study of a mini-supercell storm. Atmos. Res., 49 , 3563.

    • Search Google Scholar
    • Export Citation
  • Kogan, Y. L., and A. Shapiro, 1996: The simulation of a convective cloud in a 3D model with explicit microphysics. Part II: Dynamical and microphysical aspects of cloud merger. J. Atmos. Sci., 53 , 25252545.

    • Search Google Scholar
    • Export Citation
  • Levy, G., and W. R. Cotton, 1984: A numerical investigation of mechanisms linking glaciation of the ice-phase to the boundary layer. J. Climate Appl. Meteorol., 23 , 15051519.

    • Search Google Scholar
    • Export Citation
  • Lopez, R. E., 1978: Internal structure and development processes of C-scale aggregates of cumulus clouds. Mon. Wea. Rev., 106 , 14881494.

    • Search Google Scholar
    • Export Citation
  • McNider, R. T., and F. J. Kopp, 1990: Specification of the scale and magnitude of thermals used to initiate convection in cloud models. J. Appl. Meteor., 29 , 99104.

    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., P. J. DeMott, and W. R. Cotton, 1992: New primary ice nucleation parameterizations in an explicit cloud model. J. Appl. Meteor., 31 , 708721.

    • Search Google Scholar
    • Export Citation
  • Office of Project Support, 1992: Convection and Precipitation/Electrification Experiment (CaPE) operations summary and data inventory. National Center for Atmospheric Research, 425 pp.

    • Search Google Scholar
    • Export Citation
  • Orville, H. D., Y-H. Kuo, R. D. Farley, and C. S. Hwang, 1980: Numerical simulation of cloud interactions. J. Rech. Atmos., 14 , 499516.

    • Search Google Scholar
    • Export Citation
  • Peterson Jr., R. E., 1984: A triple-Doppler radar analysis of discretely propagating multicell convective storm. J. Atmos. Sci., 41 , 29732990.

    • Search Google Scholar
    • Export Citation
  • Pielke Sr., R. A., 1974: A three-dimensional model of sea breeze over south Florida. Mon. Wea. Rev., 102 , 115139.

  • Pielke Sr., R. A., and Coauthors. 1992: A comprehensive meteorological modeling system—RAMS. Meteor. Atmos. Phys., 49 , 6991.

  • Rauscher, M., 1953: Introduction to Aeronautical Dynamics. Wiley, 664 pp.

  • Rogers, R. R., and M. K. Yau, 1991: A Short Course in Cloud Physics. International Series in Natural Philosophy, Vol. 113, Pergamon Press, 293 pp.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and W. L. Woodley, 1989: Effects of cloud seeding in west Texas. J. Appl. Meteor., 28 , 10501080.

  • Rosenfeld, D., and W. L. Woodley, 1993: Effects of cloud seeding in west Texas: Additional results and new insights. J. Appl. Meteor., 32 , 18481866.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., 1980: Downdrafts as linkages in dynamic cumulus seeding effects. J. Appl. Meteor., 19 , 477487.

  • Simpson, J., and W. L. Woodley, 1971: Seeding cumulus in Florida: New 1970 results. Science, 172 , 117126.

  • Simpson, J., N. E. Westcott, R. J. Clerman, and R. A. Pielke, 1980: On cumulus mergers. Arch. Meteor. Geophys. Bioklim., 29A , 140.

  • Srivastava, R. C., 1967: A study of the effect of precipitation on cumulus dynamics. J. Atmos. Sci., 24 , 3645.

  • Stalker, J. R., 1997: Deep convection in a low-shear subtropical environment: Cell interactions and merger processes. Ph.D. dissertation, University of Alabama in Huntsville, 184 pp.

    • Search Google Scholar
    • Export Citation
  • Stalker, J. R., and J. E. Bossert, 1998: Investigation of microphysical parameters within winter and summer type precipitation events over complex terrain. Preprints, Special Symp. on Hydrology, Phoenix, AZ, Amer. Meteor. Soc., 93–98.

    • Search Google Scholar
    • Export Citation
  • Stalker, J. R., and K. R. Knupp, 2002: A method to identify convective cells within multicell thunderstorms from multiple Doppler radar data. Mon. Wea. Rev., 130 , 188195.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., and J. Simpson, 1984: Cloud interactions and merging: Numerical simulations. J. Atmos. Sci., 41 , 29012917.

  • Tao, W-K., and J. Simpson, 1989: A further study of cumulus interactions and mergers: Three-dimensional simulations with trajectory analysis. J. Atmos. Sci., 46 , 29743004.

    • Search Google Scholar
    • Export Citation
  • Tremback, C. J., 1990: Numerical simulation of a mesoscale convective complex: Model development and numerical results. Ph.D. dissertation, Colorado State University, Atmospheric Science Paper 465, 247 pp.

    • Search Google Scholar
    • Export Citation
  • Tripoli, G. J., 1986: A numerical investigation of an orographic mesoscale convective system. Ph.D. dissertation, Colorado State University, Atmospheric Science Paper 401, 290 pp.

    • Search Google Scholar
    • Export Citation
  • Tripoli, G. J., and W. R. Cotton, 1980: A numerical investigation of several factors leading to the observed variable intensity of deep convection over south Florida. J. Appl. Meteor., 19 , 10371067.

    • Search Google Scholar
    • Export Citation
  • Tripoli, G. J., and W. R. Cotton, 1981: The use of ice–liquid water potential temperature as a thermodynamic variable in deep atmospheric models. Mon. Wea. Rev., 109 , 10941102.

    • Search Google Scholar
    • Export Citation
  • Turpeinen, O., 1982: Cloud interactions and merging on day 261 of GATE. Mon. Wea. Rev., 110 , 12381254.

  • Verlinde, J., P. J. Flatau, and W. R. Cotton, 1990: Analytical solutions to the collection growth equation: Comparison with approximate methods and application to cloud microphysics parameterization schemes. J. Atmos. Sci., 47 , 28712880.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and N. T. Atkins, 1994: Observations of the sea-breeze front during CaPE. Part I: Single-Doppler, satellite, and cloud photogrammetry analysis. Mon. Wea. Rev., 122 , 10921114.

    • Search Google Scholar
    • Export Citation
  • Walko, R. L., and C. J. Tremback, cited 1998: The Regional Atmospheric Modeling System (RAMS): Technical description. [Available online at http://www.atmet.com/html/docs/rams/rams_techman.pdf.].

    • Search Google Scholar
    • Export Citation
  • Walko, R. L., W. R. Cotton, M. P. Meyers, and J. Y. Harrignton, 1995: New RAMS cloud microphysics parameterization. Part I: The single-moment scheme. Atmos. Res., 38 , 2962.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1984: The structure and classification of numerically simulated convective storms in directionally varying wind shear. Mon. Wea. Rev., 112 , 24792498.

    • Search Google Scholar
    • Export Citation
  • Westcott, N. E., 1977: Radar characteristics of south Florida convective rainfall. Proc. Sixth Conf. on Planned and Inadvertent Weather Modification, Champaign-Urbana, IL, Amer. Meteor. Soc., 190–191.

    • Search Google Scholar
    • Export Citation
  • Westcott, N. E., 1984: A historical perspective on cloud mergers. Bull. Amer. Meteor. Soc., 65 , 219227.

  • Westcott, N. E., 1994: Merging of convective clouds: Cloud initiation, bridging, and subsequent growth. Mon. Wea. Rev., 122 , 780790.

  • Westcott, N. E., and P. C. Kennedy, 1989: Cell development and merger in an Illinois thunderstorm observed by Doppler radar. J. Atmos. Sci., 46 , 117131.

    • Search Google Scholar
    • Export Citation
  • Wiggert, V., G. L. Lockett, and S. S. Ostlund, 1981: Radar rainshower growth histories and variations with wind speed, echo motion, location and merger status. Mon. Wea. Rev., 109 , 14671494.

    • Search Google Scholar
    • Export Citation
  • Wilkins, E. M., Y. K. Sasaki, G. E. Gerber, and W. H. Chaplin Jr., 1976: Numerical simulation of lateral interactions between buoyant clouds. J. Atmos. Sci., 33 , 13211329.

    • Search Google Scholar
    • Export Citation
  • Woodley, W. L., J. Jill, A. Barnston, J. Simpson, R. Biondini, and J. Flueck, 1982: Rainfall results of the Florida Area Cumulus Experiments, 1970–1976. J. Appl. Meteor., 21 , 139164.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 196 80 12
PDF Downloads 151 50 5