The Deep-Atmosphere Euler Equations in a Generalized Vertical Coordinate

Andrew Staniforth Met Office, Bracknell, United Kingdom

Search for other papers by Andrew Staniforth in
Current site
Google Scholar
PubMed
Close
and
Nigel Wood Met Office, Bracknell, United Kingdom

Search for other papers by Nigel Wood in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Previous analysis of the hydrostatic primitive equations using a generalized vertical coordinate is extended to the deep-atmosphere nonhydrostatic Euler equations, and some special vertical coordinates of interest are noted. Energy and axial angular momentum budgets are also derived. This would facilitate the development of conserving finite-difference schemes for deep-atmosphere models. It is found that the implied principles of energy and axial angular momentum conservation depend on the form of the upper boundary. In particular, for a modeled atmosphere of finite extent, global energy conservation is only obtained for a rigid lid, fixed in space and time. To additionally conserve global axial angular momentum, the height of the lid cannot vary with longitude.

Corresponding author address: Dr. Andrew Staniforth, Met Office, Room 249, London Road, Bracknell RG12 2SZ, United Kingdom. Email: Andrew.Staniforth@metoffice.com

Abstract

Previous analysis of the hydrostatic primitive equations using a generalized vertical coordinate is extended to the deep-atmosphere nonhydrostatic Euler equations, and some special vertical coordinates of interest are noted. Energy and axial angular momentum budgets are also derived. This would facilitate the development of conserving finite-difference schemes for deep-atmosphere models. It is found that the implied principles of energy and axial angular momentum conservation depend on the form of the upper boundary. In particular, for a modeled atmosphere of finite extent, global energy conservation is only obtained for a rigid lid, fixed in space and time. To additionally conserve global axial angular momentum, the height of the lid cannot vary with longitude.

Corresponding author address: Dr. Andrew Staniforth, Met Office, Room 249, London Road, Bracknell RG12 2SZ, United Kingdom. Email: Andrew.Staniforth@metoffice.com

Save
  • Cullen, M. J. P., T. Davies, M. H. Mawson, J. A. James, and S. C. Coulter, 1997: An overview of numerical methods for the next generation UK NWP and climate model. Numerical Methods in Atmospheric Modelling: The André Robert Memorial Volume, C. Lin et al., Eds., Canadian Meteorological and Oceanographical Society, 425–444.

    • Search Google Scholar
    • Export Citation
  • Daley, R., 1988: The normal modes of the spherical non-hydrostatic equations with applications to the filtering of acoustic modes. Tellus, 40A , 96106.

    • Search Google Scholar
    • Export Citation
  • Gal-Chen, T., and R. C. J. Somerville, 1975: On the use of a coordinate transformation for the solution of the Navier-Stokes equations. J. Comput. Phys., 17 , 209228.

    • Search Google Scholar
    • Export Citation
  • Kasahara, A., 1974: Various vertical coordinate systems used for numerical weather prediction. Mon. Wea. Rev., 102 , 509522.

  • Konor, C. S., and A. Arakawa, 1997: Design of an atmospheric model based on a generalized vertical coordinate. Mon. Wea. Rev., 125 , 16491673.

    • Search Google Scholar
    • Export Citation
  • Laprise, R., 1992: The Euler equations of motion with hydrostatic pressure as an independent variable. Mon. Wea. Rev., 120 , 197207.

  • Laprise, R., and C. Girard, 1990: A spectral general circulation model using a piecewise-constant finite-element representation on a hybrid vertical coordinate system. J. Climate, 3 , 3252.

    • Search Google Scholar
    • Export Citation
  • Phillips, N. A., 1957: A coordinate system having some special advantages for numerical forecasting. J. Meteor., 14 , 184185.

  • Phillips, N. A., 1973: Principles of large-scale numerical weather prediction. Dynamic Meteorology, P. Morel, Ed., Reidel, 1–96.

  • Qian, J-H., F. H. M. Semazzi, and J. S. Scroggs, 1998: A global nonhydrostatic semi-Lagrangian atmospheric model with orography. Mon. Wea. Rev., 126 , 747771.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and D. M. Burridge, 1981: An energy and angular-momentum conserving vertical finite-difference scheme and hybrid vertical coordinates. Mon. Wea. Rev., 109 , 758766.

    • Search Google Scholar
    • Export Citation
  • Staniforth, A., 2001: Developing efficient unified nonhydrostatic models. Proc. 50th Anniversary of Numerical Weather Prediction Commemorative Symp., Potsdam, Germany, Deutsche Meteorologische Gesellschaft e.v., 185–200.

    • Search Google Scholar
    • Export Citation
  • Tanguay, M., A. Robert, and R. Laprise, 1990: A semi-implicit semi-Lagrangian fully compressible regional forecast model. Mon. Wea. Rev., 118 , 19701980.

    • Search Google Scholar
    • Export Citation
  • Thuburn, J., N. Wood, and A. Staniforth, 2002: Normal modes of deep atmospheres. I: Spherical geometry. Quart. J. Roy. Meteor. Soc., 128 , 17711792.

    • Search Google Scholar
    • Export Citation
  • White, A. A., and R. A. Bromley, 1995: Dynamically consistent, quasi-hydrostatic equations for global models with a complete representation of the Coriolis force. Quart. J. Roy. Meteor. Soc., 121 , 399418.

    • Search Google Scholar
    • Export Citation
  • Wood, N., and A. Staniforth, 2003: The deep-atmosphere Euler equations with a mass-based vertical coordinate. Quart. J. Roy. Meteor. Soc., 129 , 12893000.

    • Search Google Scholar
    • Export Citation
  • Yeh, K-S., J. Côté, S. Gravel, A. Méthot, A. Patoine, M. Roch, and A. Staniforth, 2002: The CMC–MRB Global Environmental Multiscale (GEM) model. Part III: Nonhydrostatic formulation. Mon. Wea. Rev., 130 , 339356.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 594 258 34
PDF Downloads 476 218 38